
MPTS 2026
NIST Workshop on Multi-Party Threshold Schemes

joint work with

Hiraku Morita (University of Southern Denmark),

Peter Scholl (Aarhus University),

Daniel Tschudi (Concordium, Eastern Switzerland University of Applied Sciences)

Symphony: Threshold Evaluation of Symmetric Primitives

A protocol family for threshold AES, SHA2, SHA3 and G-/C-/H-/KMAC

evaluation in the three-party, honest majority setting

Erik Pohle

erik.pohle@cs.au.dk

January 28th, 2026

Aarhus University, Denmark

Overview

Planned Submission

Threshold evaluation of

• AES (secret-shared key)

• GMAC and CMAC (secret-shared key)

• SHA2 and SHA3 (secret-shared input)

• HMAC and KMAC (secret-shared key)

Setting

• 3 parties, 1 tolerated corruption

• active security with abort

Techniques

• replicated secret sharing [FLNW17]

• generation of random one-hot vector

correlations

• oblivious table lookup

• distributed inner-product checks

[BBC+19,MPS+25]

Applications

• threshold symmetric-key (authenticated)

encryption

• distributed authentication protocols, private

set intersection, secure database joins

• virtual TPM

1

Outline

• Background

• Replicated Secret Sharing
• Oblivious Table Lookup
• Achieving Active Security

• Module Overview

• Detail Modules

• Experimental Results

2

Background

Replicated Secret Sharing (1)

secret x ∈ GF(2k)

Secret Sharing

• additive sharing, ⟨x⟩i = xi where x1 + x2 + x3 = x

• replicated sharing JxK1 = (x1, x2), JxK2 = (x2, x3) and JxK3 = (x3, x1).

Linear Computation

• Linear operation L: JL(x)Ki = (L(⟨x⟩i), L(⟨x⟩i+1))

• Squaring: Jx2K = (⟨x⟩2i , ⟨x⟩
2
i+1)

• Bit decomposition: JxK = (Jx0K, . . . , Jxk−1K), xj ∈ {0, 1}
→ no communication

3

Replicated Secret Sharing (2)

Multiplication JxK · JyK

Given ⟨0⟩ from preprocessing (can be derived from correlated PRF keys)

1 Local multiplication ⟨xy⟩i = xiyi + (xi + xi+1)(yi + yi+1)

→ obtain additive sharing of xy

2 Send ⟨xy⟩i + ⟨0⟩i to Pi−1, set JxyKi = (⟨xy⟩i + ⟨0⟩i , ⟨xy⟩i+1 + ⟨0⟩i+1)

Table Lookup LUT JT [x]K

Table T ,given random one-hot vector correlation from preprocessing JrK, Je(r)K

Je(r)K = (J0K, . . . , J0K, J1K︸ ︷︷ ︸
r

, J0K, . . .)

1 Reveal value c = r + x

2 Local computation JT [x]K =
∑

i T [c − i] · Je(r)i K
4

Active Security

Linear Operations

• each share of the corrupted party is held by an honest party

• consistency is checked for all revealed values

• before accepting result: parties exchange views (pairwise)

• compress transcript using hash function

Multiplications

• recursive inner-product check (adapted to our setting from [BBC+19,BGIN20])

• for L inner-product triples
∑m

i=1 JxiK · JyiK = JzK; let N = L ·m
Cost

• O(logN) · (log |F|) bits of communication (we use F = GF(264))

• in logN rounds of communication

5

Symphony – Overview

Symphony Modules

rOHV preprocessing

(OHVerture, Cat. S7)

AES

(Maestro, Cat. N3.1)

GMAC-AES

(GMACnifico, Cat. N3.4)

GF(2k) ABB

(module)

SHA2

(SHArp-2, Cat. N3.3)

HMAC

(HMACnifico, Cat. N3.4)

CMAC-AES

(CMACnifico, Cat. N3.4)

SHA3

(SHArp-3, Cat. N3.3)

KMAC

(KMACnifico, Cat. N3.4)

6

GF(2k) Arithmetic Black Box (ABB)

• Input(x ,Pi)→ JxK: party Pi inputs x ∈ GF(2k) into the ABB

• Linop(f , Jx1K, . . .)→ Jf (x1, . . .)K, for any GF(2)-linear function f

• LocalMul(JxK, JyK)→ ⟨x · y⟩

• Reshare(⟨x⟩)→ JxK
• BitMul(JxK, JyK)→ Jx · yK where x ∈ GF(2) and y ∈ GF(2k).

• Reconst(JxK)→ x : unverified opening of the secret-shared JxK.

• VerifyRecon(): verifies all opened values (via Reconst) so far.

• VerifyMul(): verifies all multiplications (via LocalMul and BitMul) so far.

• Output(JxK)→ x/⊥: verified output

(for k ∈ {1, 4, 8, 64, 128})

7

OHVerture: Preprocessing for random one-hot vectors

Output(
JrK, Je(r)K

)
or

(
JrK, ⟨e(r)⟩

)
where e(r) = (0, . . . , 0, 1︸ ︷︷ ︸

r

, 0, . . .) and r random

Usefulness as Gadget

enable richer MPC gadgets such as table lookup

protocols

• secure sampling for common noise

distributions [MRS25,FFG+25]

• fast online phase when compiling Boolean

circuits into LUT gates [BHS+23]

• ...

• rOHVrss(N = 2k , L)→
(
JrjK, Je(rj)K

)L
j=1

outputs shares of L correlations, where

rj←$GF(2k)

• rOHVadd(N = 2k , L)→
(
JrjK, ⟨e(rj)⟩

)L
j=1

outputs shares of L correlations, where

rj←$GF(2k)
8

Maestro: AES enciphering & deciphering

Output

distributed key (schedule) generation, enciphering, deciphering for AES-128 and AES-256

• DistKeyGen()→ JksK: outputs the key schedule ks of a fresh random AES-128/-256 key

as shares to the parties

• InputKey(k,Pi)→ JkK: inputs the key by party Pi

• ComputeKS(JkK)→ JksK: computes the key schedule

• InputBlock(m,Pi)→ JmK: inputs a 128-bit block by party Pi

• OutputBlock(JmK)→ m

• Encipher(JksK, JmK)→ JAES(ks,m)K: computes AES enciphering

with performance mode


• “online phase throughput”

• “total throughput”

• “low latency”

9

SHArp: Threshold Hashing with SHA2 & SHA3

Output

hashing of a secret-shared message for SHA-256, SHA-512, SHA3-256 and SHA3-512

• InputMessage(m,Pi)→ JmK: inputs a message by party Pi .

• Hash(JmK)→ JH(m)K: computes the threshold hash.

• OutputDigest(JdK)→ d , where JdK is obtained from any of the hash computations above.

10

MACnifico: Threshold GMAC-AES, CMAC-AES, HMAC and KMAC

Output

MAC tag computation using secret-shared key:

• GMAC and CMAC (from AES-128 and AES-256)

• HMAC (from SHA-256, SHA-512, SHA3-256 and SHA3-512)

• KMAC-128 and KMAC-256

• InputKey(k,Pi)→ JkK: inputs the MAC key by party Pi

• InputMessage(m,Pi)→ JmK: inputs the message by party Pi

• TagGen(JkK, JmK)→ JτK: computes the threshold MAC tag generation on the given key

and message

• OutputTag(JτK)→ τ , where JτK is obtained from any thresholdized TagGen computation.

11

Symphony Modules

rOHV preprocessing

(OHVerture, Cat. S7)

AES

(Maestro, Cat. N3.1)

GMAC-AES

(GMACnifico, Cat. N3.4)

GF(2k) ABB

(module)

SHA2

(SHArp-2, Cat. N3.3)

HMAC

(HMACnifico, Cat. N3.4)

CMAC-AES

(CMACnifico, Cat. N3.4)

SHA3

(SHArp-3, Cat. N3.3)

KMAC

(KMACnifico, Cat. N3.4)

12

Selected Technical Details

rOHV preprocessing (1)

Length 16 using GF(24)

1 generate random J·K-shared bits r0, r1, r2, r3

2 compute partial products ri rj , ri rj rk and r0r1r2r3

3 each element in e(r) is a linear combination of partial products

Mult. check requires checking 2 GF(264) multiplications

Cost

• 11 GF(2) multiplications → 11 bits of communication

• in 2 communication rounds

13

rOHV preprocessing (2)

Length 256 using GF(28)

1 obtain 2 length-16 random one-hot vectors: JuK, Je(u)K and JvK, Je(v)K

2 local tensor product ⟨e(r)⟩ ← Je(u)K⊗ Je(v)K where r = u∥v
3 output (JrK, ⟨e(r)⟩)

Mult. check requires checking 4 GF(264) multiplications + AES S-box check for LUT

Cost

• 22 GF(2) multiplications → 22 bits of communication

• in 2 communication rounds

14

Advanced Encryption Standard (AES)

Block cipher composed of 10 rounds (AES-128)

Let GF(28) = F2[X]/X 8 + X 4 + X 3 + X + 1.
S =


s0 s4 s8 s12

s1 s5 s9 s13

s2 s6 s10 s14

s3 s7 s11 s15


1 SubBytes: S-box(si) = f (s−1

i)

2 ShiftRows:


s0 s4 s8 s12

s1 s5 s9 s13

s2 s6 s10 s14

s3 s7 s11 s15

 →


s0 s4 s8 s12

s5 s9 s13 s1

s10 s14 s2 s6

s15 s3 s7 s11



3 MixColumns:


02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

 · S

4 AddRoundKey: S + RK

only non-linear computation

15

MAESTRO (1)

compute inversion x−1 ∈ GF(28)

Performance Mode: High Online Phase Throughput

1 use isomorphism between GF(28) and GF(24)2 (linear operation)

2 compute v−1 ∈ GF(24) as table lookup (consume length 16 OHV from OHVerture)

Mult. check requires checking 1 GF(264) multiplication

Cost

• 3 GF(24) mult. + 1 GF(24) inversion → 16 bits of communication

• in 2 communication rounds

16

MAESTRO (2)

compute inversion x−1 ∈ GF(28)

Performance Mode: High Total Throughput

1 use isomorphism between GF(28) and GF(24)2 (linear operation)

2 compute v−1 ∈ GF(24) as v2 · v4 · v8

Mult. check requires checking 3 GF(264) multiplications

Cost

• 5 GF(24) mult. → 20 bits of communication

• in 3 communication rounds

17

MAESTRO (3)

compute inversion x−1 ∈ GF(28)

Performance Mode: Low Latency

1 compute x−1 ∈ GF(28) as table lookup (consuming length-256 OHV from OHVerture)

Mult. check requires checking 2 GF(264) multiplications

Cost

• 16 bits of communication

• in 1 communication round

18

SHArp

SHA-2

compute as Boolean circuits

Cost (compression function of SHA-256)

• ≈ 2.8KB of communication

• in ≈ 1600 communication rounds

SHA-3

compute as Boolean circuits

Cost (24-round permutation Keccak-f)

• ≈ 4.8KB of communication

• in ≈ 24 communication rounds

19

MACnifico

GMAC

• implement GF(2128) for GMAC

• mult. check requires 2 GF(264) inner-product checks

→ remaining constructions make use of previously introduced modules

20

Preliminary Experimental Results

Benchmark from [MPS+25] (1)

Batched enciphering of 100000 AES blocks (≈ 1.6 MB)

Preprocessing Online Phase Throughput (blocks/s)

Protocol Time (s) Data (MB) Time (s) Data (MB) Online Total

online tp. 0.23 22 2.24 ≈ 32 44624 40533

total tp. – – 2.34 ≈ 40 42799 42799

low latency 0.84 44 3.65 ≈ 32 27373 22280

run on 3 separate machines (16-core Intel Core i9-9900 3.10GHz, 128GB RAM) over a 9.47 Gbit/s

LAN network

21

Benchmark from [MPS+25] (1)

Batched enciphering of 100000 AES blocks (≈ 1.6 MB)

Preprocessing Online Phase Throughput (blocks/s)

Protocol Time (s) Data (MB) Time (s) Data (MB) Online Total

online tp. 0.23 22 2.24 ≈ 32 ≈ 714 KB/s ≈ 649 KB/s

total tp. – – 2.34 ≈ 40 ≈ 685 KB/s ≈ 685 KB/s

low latency 0.84 44 3.65 ≈ 32 ≈ 438 KB/s ≈ 356 KB/s

run on 3 separate machines (16-core Intel Core i9-9900 3.10GHz, 128GB RAM) over a 9.47 Gbit/s

LAN network

22

Benchmark from [MPS+25] (2)

Computation latency of a single block enciphering

1ms 15ms 30ms 50ms 100ms
0

2,000

4,000

RTT (ms)

C
o
m
p
u
ta
ti
o
n
L
at
en
cy

(m
s)

low latency

online tp.

total tp.

(same setup as previous slide; network delay and bandwidth altered with tc)
23

Summary

Planned Submission

Threshold evaluation of

• AES (secret-shared key)

• GMAC and CMAC (secret-shared key)

• SHA2 and SHA3 (secret-shared input)

• HMAC and KMAC (secret-shared key)

Setting

• 3 parties, 1 tolerated corruption

• active security with abort

Techniques

• replicated secret sharing [FLNW17]

• generation of random one-hot vector

correlations

• oblivious table lookup

• distributed inner-product checks

[BBC+19,MPS+25]

Applications

• threshold symmetric-key (authenticated)

encryption

• distributed authentication protocols, private

set intersection, secure database joins

• virtual TPM

24

References (1)

[BBC+19] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai.

Zero-knowledge proofs on secret-shared data via fully linear PCPs. In CRYPTO 2019.

https://ia.cr/2019/188

[BGIN20] Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. Efficient fully secure computation

via distributed zero-knowledge proofs. In ASIACRYPT 2020. https://ia.cr/2020/1451

[BHS+23] Andreas Brüggemann, Robin Hundt, Thomas Schneider, Ajith Suresh, and Hossein

Yalame. FLUTE: Fast and Secure Lookup Table Evaluations. In IEEE Security & Privacy 2023.

https://ia.cr/2023/499

[FFG+25] Olive Franzese, Congyu Fang, Radhika Garg, Somesh Jha, Nicolas Papernot, Xiao

Wang, and Adam Dziedzic. Secure Noise Sampling for Differentially Private Collaborative

Learning. In ACM CCS 2025. https://ia.cr/2025/1025

Some images from Flaticon.com 25

https://ia.cr/2019/188
https://ia.cr/2020/1451
https://ia.cr/2023/499
https://ia.cr/2025/1025

References (2)

[FLNW17] Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. High-throughput secure

three-party computation for malicious adversaries and an honest majority. In EUROCRYPT 2017.

https://ia.cr/2016/944

[MRS25] Fredrik Meisingseth, Christian Rechberger, and Fabian Schmid. Accelerating Multiparty

Noise Generation Using Lookups. IACR ePrint 2025/805. https://ia.cr/2025/805

[MPS+25] Hiraku Morita, Erik Pohle, Kunihiko Sadakane, Peter Scholl, Kazunari Tozawa, and

Daniel Tschudi. MAESTRO: Multi-party AES using Lookup Tables. In Usenix Security 2025.

https://ia.cr/2024/1317

Some images from Flaticon.com 26

https://ia.cr/2016/944
https://ia.cr/2025/805
https://ia.cr/2024/1317

	Introduction
	Overview
	Outline

	Background
	Replicated Secret Sharing (1)
	Replicated Secret Sharing (2)
	Active Security

	Symphony – Overview
	Symphony Modules
	Arithmetic Black Box (ABB)
	OHVerture: Preprocessing for random one-hot vectors
	Maestro: AES enciphering & deciphering
	SHArp: Threshold Hashing with SHA2 & SHA3
	MACnifico: Threshold GMAC-AES, CMAC-AES, HMAC and KMAC
	Symphony Modules

	Selected Technical Details
	rOHV preprocessing (1)
	rOHV preprocessing (2)
	MAESTRO
	Advanced Encryption Standard (AES)
	MAESTRO (1)
	MAESTRO (2)
	MAESTRO (3)
	SHArp
	MACnifico

	Preliminary Experimental Results
	Benchmark from [MPS+25] (1)
	Benchmark from [MPS+25] (2)

	Summary
	References

