Symphony: Threshold Evaluation of Symmetric Primitives

A protocol family for threshold AES, SHA2, SHA3 and G-/C-/H-/KMAC
evaluation in the three-party, honest majority setting

Erik Pohle MPTS 2026
erik.pohle@cs.au.dk NIST Workshop on Multi-Party Threshold Schemes

January 28th, 2026
Aarhus University, Denmark

joint work with AARHUS
Hiraku Morita (University of Southern Denmark), /v UNIVERSITY

Peter Scholl (Aarhus University),
Daniel Tschudi (Concordium, Eastern Switzerland University of Applied Sciences)

Planned Submission Setting

Threshold evaluation of . ;
® 3 parties, 1 tolerated corruption

® AES (secret-shared key) . . .
® active security with abort
® GMAC and CMAC (secret-shared key)
® SHA2 and SHA3 (secret-shared input)
® HMAC and KMAC (secret-shared key)
Techniques Applications
® replicated secret sharing [FLNW17] ® threshold symmetric-key (authenticated)
® generation of random one-hot vector encryption
correlations ® distributed authentication protocols, private
e oblivious table lookup set intersection, secure database joins
® virtual TPM

® distributed inner-product checks
[BBC+19,MPS+-25]

Background

® Replicated Secret Sharing
® Oblivious Table Lookup
® Achieving Active Security

Module Overview

Detail Modules

® Experimental Results

Background

Replicated Secret Sharing (1)

secret x € GF(2%)
Secret Sharing

® additive sharing, (x); = x; where x; + xo + x3 = x

® replicated sharing [x]; = (x1,x2), [x], = (x2,x3) and [x]; = (x3, x1).

Linear Computation

® Linear operation L: [L(x)]; = (L({x);), L((x);11))
* Squaring: [<*] = ((x)7, ()7;1)
® Bit decomposition: [x] = ([xo], ..., [xk-1]), x; € {0,1}

— Nno communication

Replicated Secret Sharing (2)

Multiplication [x] - [y]
Given (0) from preprocessing (can be derived from correlated PRF keys)

@ Local multiplication (xy);, = xiyi + (Xi + xit1)(¥i + YVit1)
— obtain additive sharing of xy

® Send (xy); + (0); to P;_1, set [xy]; = ({xy); +(0);, (xy); 11 + (0); 1)

Table Lookup LUT [T[x]]

Table T ,given random one-hot vector correlation from preprocessing [r], [e(")]

[[e(r)]] - ([[0]]’ ooy [[Oﬂv [[1]]’ [[Oﬂv ac)
—_——

r

® Reveal value c = r + x
@® Local computation [T[x]] =3, T[c —i]- [[e,.(')]}

Active Security

Linear Operations

® each share of the corrupted party is held by an honest party
® consistency is checked for all revealed values
® before accepting result: parties exchange views (pairwise)

® compress transcript using hash function

Multiplications

® recursive inner-product check (adapted to our setting from [BBC19,BGIN20])

e for L inner-product triples > [x;] - [vi] = [z]; let N=L-m
Cost
® O(log N) - (log |F|) bits of communication (we use F = GF(2%4))

® in log N rounds of communication

Symphony — Overview

Symphony Modules

rOHV preprocessing X AES X GMAC-AES
/ (OHVerture, Cat. S7) " | (Maestro, Cat. N3.1) " | (GMACnifico, Cat. N3.4)

| GF(2*) ABB! SHA2 - HMAC CMAC-AES
| (module) (SHArp-2, Cat. N3.3) | A| (HMACnifico, Cat. N3.4) (CMAChifico, Cat. N3.4)

,,,,,,,,

\ SHA3 . KMAC

(SHArp-3, Cat. N3.3)| | (KMAChifico, Cat. N3.4)

GF(2%) Arithmetic Black Box (ABB)

® Input(x, P;) — [x]: party P; inputs x € GF(2¥) into the ABB

e Linop(f,[x],...) = [f(x1,...)], for any GF(2)-linear function f
e LocalMul([x], [y]) = (x-y)

® Reshare({x)) — [x]

e BitMul([[x], [y]) — [x - y] where x € GF(2) and y € GF(2¥).

® Reconst([x]) — x: unverified opening of the secret-shared [x].

® VerifyRecon(): verifies all opened values (via Reconst) so far.
® VerifyMul(): verifies all multiplications (via LocalMul and BitMul) so far.
® Output([x]) — x/L: verified output

(for k € {1,4,8,64,128})

OHVerture: Preprocessing for random one-hot vectors

Output Usefulness as Gadget
([r], [e7]) or ([r], (e7)) enable richer MPC gadgets such as table lookup
where e = (0,...,0,1,0,...) and r random protocols
~——
" ® secure sampling for common noise

distributions [MRS25,FFG{25]
® fast online phase when compiling Boolean
circuits into LUT gates [BHS 23]

® rOHVrss(N = 2%, L) — ([r], [[e(rf)ﬂ)jL:l outputs shares of L correlations, where
ri<s$GF(2%)

® rOHVadd(N = 2k, L) — ([r;]. (e(rf)>)j:1 outputs shares of L correlations, where
ri<s$GF(2%)

Maestro: AES enciphering & deciphering

Output
distributed key (schedule) generation, enciphering, deciphering for AES-128 and AES-256

® DistKeyGen() — [ks]: outputs the key schedule ks of a fresh random AES-128/-256 key
as shares to the parties

o InputKey(k, P;) — [k]: inputs the key by party P;

e ComputeKS([k])) — [ks]: computes the key schedule

® InputBlock(m, P;) — [m]: inputs a 128-bit block by party P;

® OutputBlock([m]) — m

® Encipher([ks], [m]) — [AES(ks, m)]: computes AES enciphering
e ‘“online phase throughput”
with performance mode e ‘“total throughput”
e ‘“low latency”

SHArp: Threshold Hashing with SHA2 & SHA3 #

Output
hashing of a secret-shared message for SHA-256, SHA-512, SHA3-256 and SHA3-512

® InputMessage(m, P;) — [m]: inputs a message by party P;.

® Hash([m]) — [#H(m)]: computes the threshold hash.
® OutputDigest([d]) — d, where [d] is obtained from any of the hash computations above.

10

MACnifico: Threshold GMAC-AES, CMAC-AES, HMAC and KMAC @

Output

MAC tag computation using secret-shared key:

GMAC and CMAC (from AES-128 and AES-256)
HMAC (from SHA-256, SHA-512, SHA3-256 and SHA3-512)
KMAC-128 and KMAC-256

InputKey(k, P;) — [k]: inputs the MAC key by party P;

InputMessage(m, P;) — [m]: inputs the message by party P;

TagGen([k], [m]) — [7]: computes the threshold MAC tag generation on the given key
and message

OutputTag([r]) — 7, where [7] is obtained from any thresholdized TagGen computation.

11

Symphony Modules

rOHV preprocessing X AES X GMAC-AES
/ (OHVerture, Cat. S7) " | (Maestro, Cat. N3.1) " | (GMACnifico, Cat. N3.4)

| GF(2*) ABB! SHA2 - HMAC CMAC-AES
| (module) (SHArp-2, Cat. N3.3) | A| (HMACnifico, Cat. N3.4) (CMAChifico, Cat. N3.4)

,,,,,,,,

\ SHA3 . KMAC

(SHArp-3, Cat. N3.3)| | (KMAChifico, Cat. N3.4)

12

Selected Technical Details

rOHV preprocessing (1)

Length 16 using GF(2*)

@ generate random [-]-shared bits ry, r1, 2, 3
@® compute partial products rirj, ririre and rorirrs

© each element in e(") is a linear combination of partial products

Mult. check requires checking 2 GF(2%*) multiplications

Cost
® 11 GF(2) multiplications — 11 bits of communication

® in 2 communication rounds

13

rOHV preprocessing (2)

Length 256 using GF(28)
@ obtain 2 length-16 random one-hot vectors: [u], [e(*)] and [v], [e(*)]
@ local tensor product (e(") « [e(*)] @ [e")] where r = u]|v
© output ([r], (e©))
Mult. check requires checking 4 GF(2%*) multiplications + AES S-box check for LUT

Cost
® 22 GF(2) multiplications — 22 bits of communication

® in 2 communication rounds

14

Advanced Encryption Standard (AES)

Block cipher composed of 10 rounds (AES-128)

Let GF(28) = Fo[X]/ X8+ X* + X3+ X + 1.

li only non-linear computation

@ SubBytes: S-box(s;) =
50 Sq4 S8

® ShiftRows: o1

S5 So

S2 S S10

S3 St S11

02 03

©® MixColumns: o1 02
01 01

03 01

O AddRoundKey: S + RK

f(sf_l)
S12
513
S14
S15
01 01
03 01
02 03
01 02

S15

Sy
So
S14
S3

S8
S13
S
S7

S1
S6

S11

S =

So
S1
2
S3

S4
S5
S6

S7

Sg
So
S10
S11

S12
513
S14
S15

15

MAESTRO (1)

compute inversion x~1 € GF(28)

Performance Mode: High Online Phase Throughput

@ use isomorphism between GF(28) and GF(2%)? (linear operation)
@® compute v~ € GF(2*) as table lookup (consume length 16 OHV from OHVerture)

Mult. check requires checking 1 GF(254) multiplication

Cost
® 3 GF(2*) mult. + 1 GF(2*) inversion — 16 bits of communication

® in 2 communication rounds

16

MAESTRO (2)

compute inversion x~1 € GF(28)

Performance Mode: High Total Throughput

@ use isomorphism between GF(28) and GF(2%)? (linear operation)

@® compute v € GF(2*) as v? - v* - V8

Mult. check requires checking 3 GF(254) multiplications

Cost
® 5 GF(2*) mult. — 20 bits of communication

® in 3 communication rounds

17

MAESTRO (3)

compute inversion x 1 € GF(28)
Performance Mode: Low Latency

@ compute x~ € GF(28) as table lookup (consuming length-256 OHV from OHVerture)

Mult. check requires checking 2 GF(254) multiplications

Cost
® 16 bits of communication

® in 1 communication round

18

SHA-2

compute as Boolean circuits

Cost (compression function of SHA-256)
® ~ 2.8KB of communication

® in ~ 1600 communication rounds

SHA-3

compute as Boolean circuits

Cost (24-round permutation Keccak-f)
® ~ 4.8KB of communication

® in &~ 24 communication rounds

19

MAChifico

GMAC
® implement GF(2!28) for GMAC

® mult. check requires 2 GF(2%4) inner-product checks

— remaining constructions make use of previously introduced modules

20

Preliminary Experimental Results

Benchmark from | 1 (1)

Batched enciphering of 100000 AES blocks (~ 1.6 MB)

Preprocessing Online Phase Throughput (blocks/s)
Protocol Time (s) Data (MB) Time (s) Data (MB) Online Total
online tp. 0.23 2.24 ~ 32 44624 40533
total tp. - 2.34 ~ 40 42799 42799
low latency 0.84 3.65 ~ 32 27373 22280

run on 3 separate machines (16-core Intel Core i9-9900 3.10GHz, 128GB RAM) over a 9.47 Gbit/s

LAN network

21

Benchmark from | 1 (1)

Batched enciphering of 100000 AES blocks (=~ 1.6 MB)

Preprocessing Online Phase Throughput (blocks/s)
Protocol Time (s) Data (MB) Time (s) Data (MB) Online Total
online tp. 0.23 22 2.24 ~32 =~T714KB/s =~ 649 KB/s
total tp. - - 2.34 ~40 ~ 685 KB/s =~ 685 KB/s
low latency 0.84 44 3.65 ~32 =~ 438KB/s ~ 356 KB/s

run on 3 separate machines (16-core Intel Core i9-9900 3.10GHz, 128GB RAM) over a 9.47 Gbit/s
LAN network

22

Benchmark from | 1(2)

Computation latency of a single block enciphering

T T T
—e— low latency
’g’ —=— online tp.
> 4,000 —a— total tp.
c
o]
()
-
c
.0
8 2,000 [
3
o
1S
S]
)
0 | | |
Ims 15ms 30ms 50 ms 100 ms

RTT (ms)

(same setup as previous slide; network delay and bandwidth altered with tc)
23

Planned Submission Setting

Threshold evaluation of . ;
® 3 parties, 1 tolerated corruption

® AES (secret-shared key) . . .
® active security with abort
® GMAC and CMAC (secret-shared key)
® SHA2 and SHA3 (secret-shared input)
® HMAC and KMAC (secret-shared key)
Techniques Applications
® replicated secret sharing [FLNW17] ® threshold symmetric-key (authenticated)
® generation of random one-hot vector encryption
correlations ® distributed authentication protocols, private
e oblivious table lookup set intersection, secure database joins
® virtual TPM

® distributed inner-product checks

[BBC+19,MPS+25] 2%

References (1)

[BBC+19] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai.
Zero-knowledge proofs on secret-shared data via fully linear PCPs. In CRYPTO 2019.
https://ia.cr/2019/188

[BGIN20] Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. Efficient fully secure computation
via distributed zero-knowledge proofs. In ASIACRYPT 2020. https://ia.cr/2020/1451

[BHS+23] Andreas Briiggemann, Robin Hundt, Thomas Schneider, Ajith Suresh, and Hossein
Yalame. FLUTE: Fast and Secure Lookup Table Evaluations. In IEEE Security & Privacy 2023.
https://ia.cr/2023/499

[FFG+25] Olive Franzese, Congyu Fang, Radhika Garg, Somesh Jha, Nicolas Papernot, Xiao
Wang, and Adam Dziedzic. Secure Noise Sampling for Differentially Private Collaborative
Learning. In ACM CCS 2025. https://ia.cr/2025/1025

Some images from Flaticon.com o5

https://ia.cr/2019/188
https://ia.cr/2020/1451
https://ia.cr/2023/499
https://ia.cr/2025/1025

References (2)

[FLNW17] Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. High-throughput secure
three-party computation for malicious adversaries and an honest majority. In EUROCRYPT 2017.
https://ia.cr/2016/944

[MRS25] Fredrik Meisingseth, Christian Rechberger, and Fabian Schmid. Accelerating Multiparty
Noise Generation Using Lookups. |IACR ePrint 2025/805. https://ia.cr/2025/805

[MPS+25] Hiraku Morita, Erik Pohle, Kunihiko Sadakane, Peter Scholl, Kazunari Tozawa, and
Daniel Tschudi. MAESTRO: Multi-party AES using Lookup Tables. In Usenix Security 2025.
https://ia.cr/2024/1317

Some images from Flaticon.com 26

https://ia.cr/2016/944
https://ia.cr/2025/805
https://ia.cr/2024/1317

	Introduction
	Overview
	Outline

	Background
	Replicated Secret Sharing (1)
	Replicated Secret Sharing (2)
	Active Security

	Symphony – Overview
	Symphony Modules
	Arithmetic Black Box (ABB)
	OHVerture: Preprocessing for random one-hot vectors
	Maestro: AES enciphering & deciphering
	SHArp: Threshold Hashing with SHA2 & SHA3
	MACnifico: Threshold GMAC-AES, CMAC-AES, HMAC and KMAC
	Symphony Modules

	Selected Technical Details
	rOHV preprocessing (1)
	rOHV preprocessing (2)
	MAESTRO
	Advanced Encryption Standard (AES)
	MAESTRO (1)
	MAESTRO (2)
	MAESTRO (3)
	SHArp
	MACnifico

	Preliminary Experimental Results
	Benchmark from [MPS+25] (1)
	Benchmark from [MPS+25] (2)

	Summary
	References

