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Overview

Planned Submission

Threshold evaluation of

• AES (secret-shared key)

• GMAC and CMAC (secret-shared key)

• SHA2 and SHA3 (secret-shared input)

• HMAC and KMAC (secret-shared key)

Setting

• 3 parties, 1 tolerated corruption

• active security with abort

Techniques

• replicated secret sharing [FLNW17]

• generation of random one-hot vector

correlations

• oblivious table lookup

• distributed inner-product checks

[BBC+19,MPS+25]

Applications

• threshold symmetric-key (authenticated)

encryption

• distributed authentication protocols, private

set intersection, secure database joins

• virtual TPM
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Outline

• Background

• Replicated Secret Sharing
• Oblivious Table Lookup
• Achieving Active Security

• Module Overview

• Detail Modules

• Experimental Results
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Background



Replicated Secret Sharing (1)

secret x ∈ GF(2k)

Secret Sharing

• additive sharing, ⟨x⟩i = xi where x1 + x2 + x3 = x

• replicated sharing JxK1 = (x1, x2), JxK2 = (x2, x3) and JxK3 = (x3, x1).

Linear Computation

• Linear operation L: JL(x)Ki = (L(⟨x⟩i ), L(⟨x⟩i+1))

• Squaring: Jx2K = (⟨x⟩2i , ⟨x⟩
2
i+1)

• Bit decomposition: JxK = (Jx0K, . . . , Jxk−1K), xj ∈ {0, 1}
→ no communication
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Replicated Secret Sharing (2)

Multiplication JxK · JyK

Given ⟨0⟩ from preprocessing (can be derived from correlated PRF keys)

1 Local multiplication ⟨xy⟩i = xiyi + (xi + xi+1)(yi + yi+1)

→ obtain additive sharing of xy

2 Send ⟨xy⟩i + ⟨0⟩i to Pi−1, set JxyKi = (⟨xy⟩i + ⟨0⟩i , ⟨xy⟩i+1 + ⟨0⟩i+1)

Table Lookup LUT JT [x ]K

Table T ,given random one-hot vector correlation from preprocessing JrK, Je(r)K

Je(r)K = (J0K, . . . , J0K, J1K︸ ︷︷ ︸
r

, J0K, . . . )

1 Reveal value c = r + x

2 Local computation JT [x ]K =
∑

i T [c − i ] · Je(r)i K
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Active Security

Linear Operations

• each share of the corrupted party is held by an honest party

• consistency is checked for all revealed values

• before accepting result: parties exchange views (pairwise)

• compress transcript using hash function

Multiplications

• recursive inner-product check (adapted to our setting from [BBC+19,BGIN20])

• for L inner-product triples
∑m

i=1 JxiK · JyiK = JzK; let N = L ·m
Cost

• O(logN) · (log |F|) bits of communication (we use F = GF(264))

• in logN rounds of communication
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Symphony – Overview



Symphony Modules

rOHV preprocessing

(OHVerture, Cat. S7)

AES

(Maestro, Cat. N3.1)

GMAC-AES

(GMACnifico, Cat. N3.4)

GF(2k) ABB

(module)

SHA2

(SHArp-2, Cat. N3.3)

HMAC

(HMACnifico, Cat. N3.4)

CMAC-AES

(CMACnifico, Cat. N3.4)

SHA3

(SHArp-3, Cat. N3.3)

KMAC

(KMACnifico, Cat. N3.4)
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GF(2k) Arithmetic Black Box (ABB)

• Input(x ,Pi )→ JxK: party Pi inputs x ∈ GF(2k) into the ABB

• Linop(f , Jx1K, . . . )→ Jf (x1, . . . )K, for any GF(2)-linear function f

• LocalMul(JxK, JyK)→ ⟨x · y⟩

• Reshare(⟨x⟩)→ JxK
• BitMul(JxK, JyK)→ Jx · yK where x ∈ GF(2) and y ∈ GF(2k).

• Reconst(JxK)→ x : unverified opening of the secret-shared JxK.

• VerifyRecon(): verifies all opened values (via Reconst) so far.

• VerifyMul(): verifies all multiplications (via LocalMul and BitMul) so far.

• Output(JxK)→ x/⊥: verified output

(for k ∈ {1, 4, 8, 64, 128})
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OHVerture: Preprocessing for random one-hot vectors

Output(
JrK, Je(r)K

)
or

(
JrK, ⟨e(r)⟩

)
where e(r) = (0, . . . , 0, 1︸ ︷︷ ︸

r

, 0, . . . ) and r random

Usefulness as Gadget

enable richer MPC gadgets such as table lookup

protocols

• secure sampling for common noise

distributions [MRS25,FFG+25]

• fast online phase when compiling Boolean

circuits into LUT gates [BHS+23]

• ...

• rOHVrss(N = 2k , L)→
(
JrjK, Je(rj )K

)L
j=1

outputs shares of L correlations, where

rj←$GF(2k)

• rOHVadd(N = 2k , L)→
(
JrjK, ⟨e(rj )⟩

)L
j=1

outputs shares of L correlations, where

rj←$GF(2k)
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Maestro: AES enciphering & deciphering

Output

distributed key (schedule) generation, enciphering, deciphering for AES-128 and AES-256

• DistKeyGen()→ JksK: outputs the key schedule ks of a fresh random AES-128/-256 key

as shares to the parties

• InputKey(k,Pi )→ JkK: inputs the key by party Pi

• ComputeKS(JkK)→ JksK: computes the key schedule

• InputBlock(m,Pi )→ JmK: inputs a 128-bit block by party Pi

• OutputBlock(JmK)→ m

• Encipher(JksK, JmK)→ JAES(ks,m)K: computes AES enciphering

with performance mode


• “online phase throughput”

• “total throughput”

• “low latency”
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SHArp: Threshold Hashing with SHA2 & SHA3

Output

hashing of a secret-shared message for SHA-256, SHA-512, SHA3-256 and SHA3-512

• InputMessage(m,Pi )→ JmK: inputs a message by party Pi .

• Hash(JmK)→ JH(m)K: computes the threshold hash.

• OutputDigest(JdK)→ d , where JdK is obtained from any of the hash computations above.
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MACnifico: Threshold GMAC-AES, CMAC-AES, HMAC and KMAC

Output

MAC tag computation using secret-shared key:

• GMAC and CMAC (from AES-128 and AES-256)

• HMAC (from SHA-256, SHA-512, SHA3-256 and SHA3-512)

• KMAC-128 and KMAC-256

• InputKey(k,Pi )→ JkK: inputs the MAC key by party Pi

• InputMessage(m,Pi )→ JmK: inputs the message by party Pi

• TagGen(JkK, JmK)→ JτK: computes the threshold MAC tag generation on the given key

and message

• OutputTag(JτK)→ τ , where JτK is obtained from any thresholdized TagGen computation.
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Symphony Modules

rOHV preprocessing

(OHVerture, Cat. S7)

AES

(Maestro, Cat. N3.1)

GMAC-AES

(GMACnifico, Cat. N3.4)

GF(2k) ABB

(module)

SHA2

(SHArp-2, Cat. N3.3)

HMAC

(HMACnifico, Cat. N3.4)

CMAC-AES

(CMACnifico, Cat. N3.4)

SHA3

(SHArp-3, Cat. N3.3)

KMAC

(KMACnifico, Cat. N3.4)
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Selected Technical Details



rOHV preprocessing (1)

Length 16 using GF(24)

1 generate random J·K-shared bits r0, r1, r2, r3

2 compute partial products ri rj , ri rj rk and r0r1r2r3

3 each element in e(r) is a linear combination of partial products

Mult. check requires checking 2 GF(264) multiplications

Cost

• 11 GF(2) multiplications → 11 bits of communication

• in 2 communication rounds
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rOHV preprocessing (2)

Length 256 using GF(28)

1 obtain 2 length-16 random one-hot vectors: JuK, Je(u)K and JvK, Je(v)K

2 local tensor product ⟨e(r)⟩ ← Je(u)K⊗ Je(v)K where r = u∥v
3 output (JrK, ⟨e(r)⟩)

Mult. check requires checking 4 GF(264) multiplications + AES S-box check for LUT

Cost

• 22 GF(2) multiplications → 22 bits of communication

• in 2 communication rounds
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Advanced Encryption Standard (AES)

Block cipher composed of 10 rounds (AES-128)

Let GF(28) = F2[X ]/X 8 + X 4 + X 3 + X + 1.
S =


s0 s4 s8 s12

s1 s5 s9 s13

s2 s6 s10 s14

s3 s7 s11 s15


1 SubBytes: S-box(si ) = f (s−1

i )

2 ShiftRows:


s0 s4 s8 s12

s1 s5 s9 s13

s2 s6 s10 s14

s3 s7 s11 s15

 →


s0 s4 s8 s12

s5 s9 s13 s1

s10 s14 s2 s6

s15 s3 s7 s11



3 MixColumns:


02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

 · S

4 AddRoundKey: S + RK

only non-linear computation
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MAESTRO (1)

compute inversion x−1 ∈ GF(28)

Performance Mode: High Online Phase Throughput

1 use isomorphism between GF(28) and GF(24)2 (linear operation)

2 compute v−1 ∈ GF(24) as table lookup (consume length 16 OHV from OHVerture)

Mult. check requires checking 1 GF(264) multiplication

Cost

• 3 GF(24) mult. + 1 GF(24) inversion → 16 bits of communication

• in 2 communication rounds
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MAESTRO (2)

compute inversion x−1 ∈ GF(28)

Performance Mode: High Total Throughput

1 use isomorphism between GF(28) and GF(24)2 (linear operation)

2 compute v−1 ∈ GF(24) as v2 · v4 · v8

Mult. check requires checking 3 GF(264) multiplications

Cost

• 5 GF(24) mult. → 20 bits of communication

• in 3 communication rounds
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MAESTRO (3)

compute inversion x−1 ∈ GF(28)

Performance Mode: Low Latency

1 compute x−1 ∈ GF(28) as table lookup (consuming length-256 OHV from OHVerture)

Mult. check requires checking 2 GF(264) multiplications

Cost

• 16 bits of communication

• in 1 communication round
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SHArp

SHA-2

compute as Boolean circuits

Cost (compression function of SHA-256)

• ≈ 2.8KB of communication

• in ≈ 1600 communication rounds

SHA-3

compute as Boolean circuits

Cost (24-round permutation Keccak-f)

• ≈ 4.8KB of communication

• in ≈ 24 communication rounds
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MACnifico

GMAC

• implement GF(2128) for GMAC

• mult. check requires 2 GF(264) inner-product checks

→ remaining constructions make use of previously introduced modules
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Preliminary Experimental Results



Benchmark from [MPS+25] (1)

Batched enciphering of 100000 AES blocks (≈ 1.6 MB)

Preprocessing Online Phase Throughput (blocks/s)

Protocol Time (s) Data (MB) Time (s) Data (MB) Online Total

online tp. 0.23 22 2.24 ≈ 32 44624 40533

total tp. – – 2.34 ≈ 40 42799 42799

low latency 0.84 44 3.65 ≈ 32 27373 22280

run on 3 separate machines (16-core Intel Core i9-9900 3.10GHz, 128GB RAM) over a 9.47 Gbit/s

LAN network
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Benchmark from [MPS+25] (1)

Batched enciphering of 100000 AES blocks (≈ 1.6 MB)

Preprocessing Online Phase Throughput (blocks/s)

Protocol Time (s) Data (MB) Time (s) Data (MB) Online Total

online tp. 0.23 22 2.24 ≈ 32 ≈ 714 KB/s ≈ 649 KB/s

total tp. – – 2.34 ≈ 40 ≈ 685 KB/s ≈ 685 KB/s

low latency 0.84 44 3.65 ≈ 32 ≈ 438 KB/s ≈ 356 KB/s

run on 3 separate machines (16-core Intel Core i9-9900 3.10GHz, 128GB RAM) over a 9.47 Gbit/s

LAN network
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Benchmark from [MPS+25] (2)

Computation latency of a single block enciphering
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(same setup as previous slide; network delay and bandwidth altered with tc)
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Summary

Planned Submission

Threshold evaluation of

• AES (secret-shared key)

• GMAC and CMAC (secret-shared key)

• SHA2 and SHA3 (secret-shared input)

• HMAC and KMAC (secret-shared key)

Setting

• 3 parties, 1 tolerated corruption

• active security with abort

Techniques

• replicated secret sharing [FLNW17]

• generation of random one-hot vector

correlations

• oblivious table lookup

• distributed inner-product checks

[BBC+19,MPS+25]

Applications

• threshold symmetric-key (authenticated)

encryption

• distributed authentication protocols, private

set intersection, secure database joins

• virtual TPM
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