

An Introduction to Distributed Symmetric Encryption

Erik Pohle

erik.pohle@esat.kuleuven.be

April 1st, 2025

COSIC, KU Leuven, Belgium

COSIC

KU LEUVEN

Content

- Setting
- Applications
- DiSE
- MPC-based Distributed Encryption
- for AES

Symmetric-key Encryption

- Alice and Bob share a secret key k
- Alice computes $c \leftarrow \text{Enc}(k, m)$
- Alice sends c to Bob
- Bob computes $m \leftarrow \text{Dec}(k, c)$

Symmetric-key Encryption

- Alice and Bob share a secret key k
- Alice computes $c \leftarrow \text{Enc}(k, m)$
- Alice sends c to Bob
- Bob computes $m \leftarrow \text{Dec}(k, c)$

Security?

- The adversary does not know k
- Cannot learn anything about m given c
- IND-CPA, IND-CCA

Symmetric-key Encryption

- Alice and Bob share a secret key k
- Alice computes $c \leftarrow \text{Enc}(k, m)$
- Alice sends c to Bob
- Bob computes $m \leftarrow \text{Dec}(k, c)$

Security?

- The adversary does not know k
- Cannot learn anything about m given c
- IND-CPA, IND-CCA

Examples

AES-CBC, AES-GCM, ChaCha20-Poly1305, ...

Setting: Distributed Encryption

- Goal: distribute Alice/Bob's operations among P_1, \dots, P_n
- Why? no small group of parties should learn the secret key k (threshold from secret sharing)
- P_i only knows $\llbracket k \rrbracket_i$

Setting: Distributed Encryption

- Goal: distribute Alice/Bob's operations among P_1, \dots, P_n
- Why? no small group of parties should learn the secret key k (threshold from secret sharing)
- P_i only knows $\llbracket k \rrbracket_i$

Protocol Π_1

P_1 knows $m, \llbracket k \rrbracket_1$

P_i knows $\llbracket k \rrbracket_i, i \neq 1$

- ① Parties run distributed encryption protocol
- ② P_1 outputs c

Setting: Distributed Encryption

- Goal: distribute Alice/Bob's operations among P_1, \dots, P_n
- Why? no small group of parties should learn the secret key k (threshold from secret sharing)
- P_i only knows $\llbracket k \rrbracket_i$

Protocol Π_1

P_1 knows $m, \llbracket k \rrbracket_1$

P_i knows $\llbracket k \rrbracket_i, i \neq 1$

- ① Parties run distributed encryption protocol
- ② P_1 outputs c

Protocol Π_2

P_i knows $\llbracket k \rrbracket_i, \llbracket m \rrbracket_i$

- ① Parties run distributed encryption protocol
- ② P_i outputs c

Distributed Decryption

Protocol Π_1

P_1 knows $c, \llbracket k \rrbracket_1$

P_i knows $\llbracket k \rrbracket_i, i \neq 1$

- ① Parties run distributed decryption protocol
- ② P_1 outputs m

Distributed Decryption

Protocol Π_1

P_1 knows $c, \llbracket k \rrbracket_1$
 P_i knows $\llbracket k \rrbracket_i, i \neq 1$

- ① Parties run distributed decryption protocol
- ② P_1 outputs m

Protocol Π_2

P_i knows $\llbracket k \rrbracket_i, c$

- ① Parties run distributed decryption protocol
- ② P_i outputs $\llbracket m \rrbracket_i$

Distributed Decryption

Protocol Π_1

P_1 knows $c, \llbracket k \rrbracket_1$
 P_i knows $\llbracket k \rrbracket_i, i \neq 1$

- ① Parties run distributed decryption protocol
- ② P_1 outputs m

Protocol Π_1 = DiSE

Protocol Π_2

P_i knows $\llbracket k \rrbracket_i, c$

- ① Parties run distributed decryption protocol
- ② P_i outputs $\llbracket m \rrbracket_i$

Π_2 = MPC-based distributed encryption/decryption

Desirable Properties

Desirable Properties

Correctness

$$c = \text{Enc}(k, m)$$

Desirable Properties

Correctness

$$c = \text{Enc}(k, m)$$

Privacy

- Corrupted P_j cannot learn anything about k
- (Π_1) If P_1 is honest, P_j cannot learn anything about m (except for its length)
- (Π_2) P_j cannot learn anything about m (except for its length)

Desirable Properties

Correctness

$$c = \text{Enc}(k, m)$$

Privacy

- Corrupted P_j cannot learn anything about k
- (Π_1) If P_1 is honest, P_j cannot learn anything about m (except for its length)
- (Π_2) P_j cannot learn anything about m (except for its length)

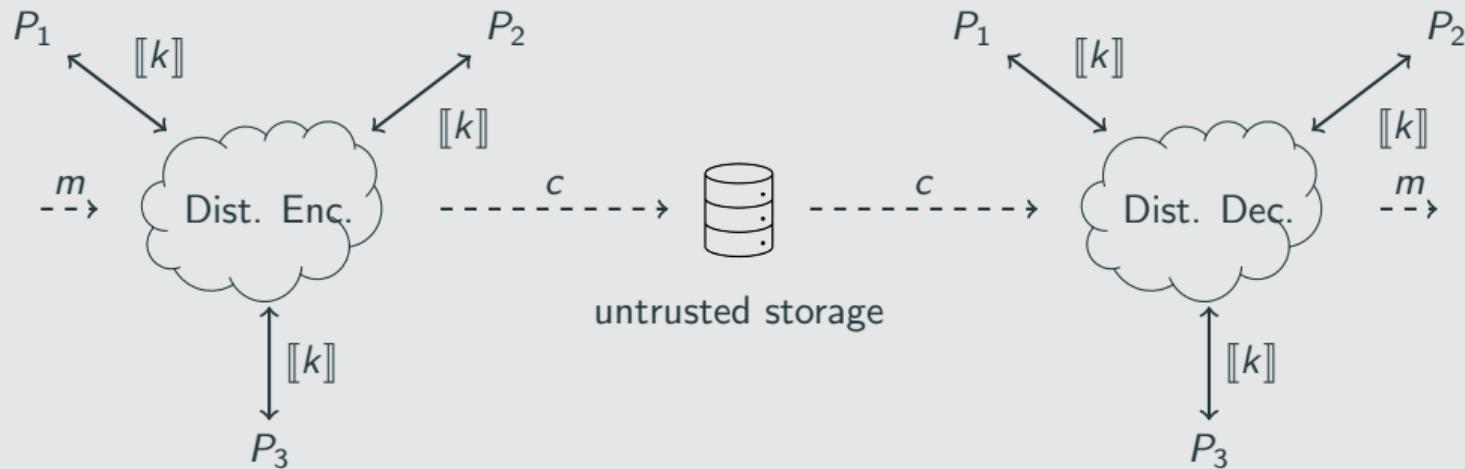
Authenticity

A corrupted party cannot forge a message

- A corrupted P_1 cannot make honest parties output m' given c'

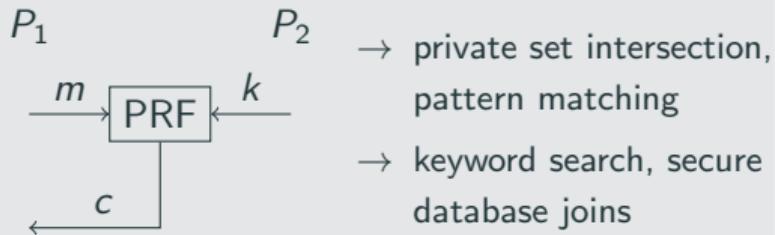
Applications

Protect Keys in Use: Encrypted Storage

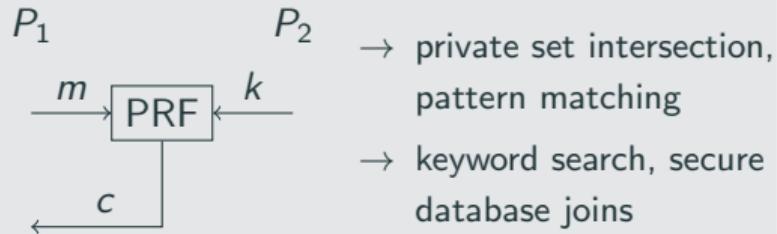


→ secret key k is shared among P_1, P_2, P_3

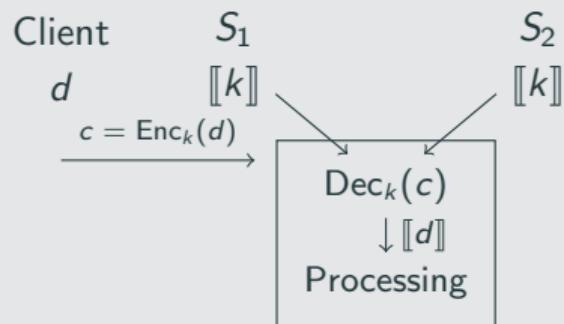
Oblivious PRFs



Oblivious PRFs

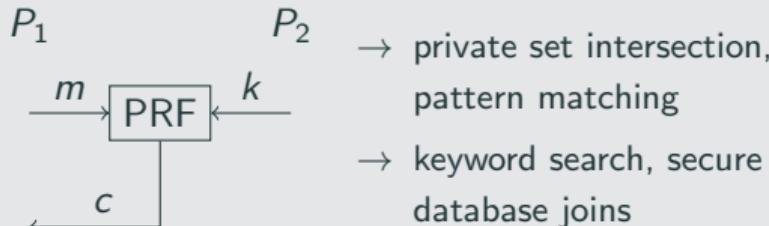


Distributed Encryption/Decryption

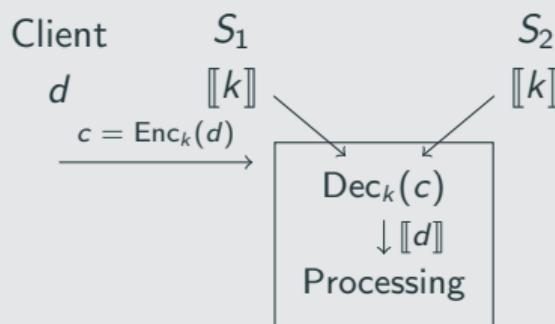


→ transciphering, “encrypt to the future”

Oblivious PRFs

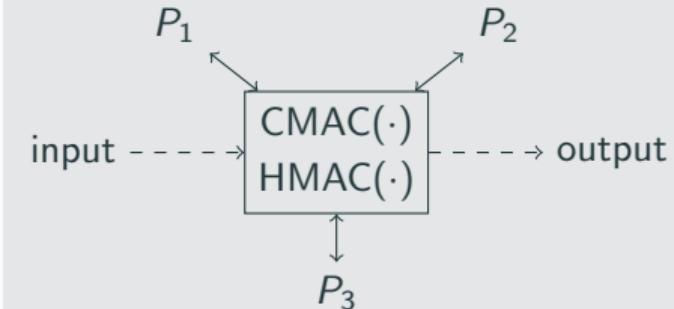


Distributed Encryption/Decryption



→ transciphering, "encrypt to the future"

virtual hardware security module



- protect cryptographic keys during use
- decentralize Kerberos Key Distribution Center
- distributed authentication/identification systems

NIST threshold cryptography project:
<https://csrc.nist.gov/projects/threshold-cryptography>

Distributed Symmetric-key Encryption (DiSE)

Distributed Symmetric-key Encryption (DiSE) [AMMR18]

Paper by Visa Research in CCS'18 with a few follow-up works

Main Idea:

- ① Initiating party P_1 derives randomness α from m
- ② All parties compute $w \leftarrow \text{DPRF}(k, \alpha)$, P_1 obtains w
- ③ P_1 encrypts m with w
- ④ P_1 outputs $c = (\text{"Enc"}(w, m), \alpha)$

Distributed Pseudo-random Function (DPRF)

Syntax:

- $\text{Setup} \rightarrow \llbracket k \rrbracket_1, \dots, \llbracket k \rrbracket_n, p$
- $\text{Eval}(\llbracket k \rrbracket_i, x, p) \rightarrow z^i$
- $\text{Combine}(z^1, \dots, z^s, p) \rightarrow z$

Distributed Pseudo-random Function (DPRF)

Syntax:

- $\text{Setup} \rightarrow \llbracket k \rrbracket_1, \dots, \llbracket k \rrbracket_n, p$
- $\text{Eval}(\llbracket k \rrbracket_i, x, p) \rightarrow z^i$
- $\text{Combine}(z^1, \dots, z^s, p) \rightarrow z$

Properties

Pseudo-random

Output z is indistinguishable from output of a random function

Correctness

By sending $z^{j'}$, corrupted parties cannot bias z
 \rightarrow honest parties either output z or abort

Commitment Scheme

Syntax:

- $\text{Setup}_{\text{Com}} \rightarrow \text{p}_{\text{Com}}$
- $\text{Com}(x, r, \text{p}_{\text{Com}}) \rightarrow \alpha$

Commitment Scheme

Syntax:

- $\text{Setup}_{\text{Com}} \rightarrow \text{p}_{\text{Com}}$
- $\text{Com}(x, r, \text{p}_{\text{Com}}) \rightarrow \alpha$

Properties

Hiding

Output α hides x (for random r)

Binding

The adversary cannot produce $(x_0, r_0) \neq (x_1, r_1)$
where $\text{Com}(x_0, r_0, \text{p}_{\text{Com}}) = \text{Com}(x_1, r_1, \text{p}_{\text{Com}})$

The Encryption Protocol

Setup: Run DPRF and commitment scheme setup;

P_i holds $p, p_{\text{Com}}, \llbracket k \rrbracket_i$

The Encryption Protocol

Setup: Run DPRF and commitment scheme setup;

P_i holds $p, p_{\text{Com}}, \llbracket k \rrbracket_i$

Message m known to P_1

P_1

$P_i, i \neq 1$

① $\alpha \leftarrow \text{Com}(m, r, p_{\text{Com}})$ for a fresh
random r

The Encryption Protocol

Setup: Run DPRF and commitment scheme setup;

P_i holds $p, p_{\text{Com}}, \llbracket k \rrbracket_i$

Message m known to P_1

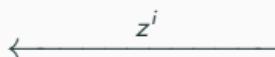
P_1

$P_i, i \neq 1$

① $\alpha \leftarrow \text{Com}(m, r, p_{\text{Com}})$ for a fresh
random r

② $z^1 \leftarrow \text{Eval}(\llbracket k \rrbracket_1, 1 \parallel \alpha, p)$

② $z^i \leftarrow \text{Eval}(\llbracket k \rrbracket_i, 1 \parallel \alpha, p)$



The Encryption Protocol

Setup: Run DPRF and commitment scheme setup;

P_i holds $p, p_{\text{Com}}, \llbracket k \rrbracket_i$

Message m known to P_1

P_1

$P_i, i \neq 1$

① $\alpha \leftarrow \text{Com}(m, r, p_{\text{Com}})$ for a fresh
random r

② $z^i \leftarrow \text{Eval}(\llbracket k \rrbracket_i, 1 \parallel \alpha, p)$

③ $w \leftarrow \text{Combine}(z^1, \dots, z^s, p)$

The Encryption Protocol

Setup: Run DPRF and commitment scheme setup;

P_i holds $p, p_{\text{Com}}, \llbracket k \rrbracket_i$

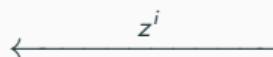
Message m known to P_1

P_1

$P_i, i \neq 1$

① $\alpha \leftarrow \text{Com}(m, r, p_{\text{Com}})$ for a fresh
random r

② $z^i \leftarrow \text{Eval}(\llbracket k \rrbracket_i, 1 \parallel \alpha, p)$



② $z^1 \leftarrow \text{Eval}(\llbracket k \rrbracket_1, 1 \parallel \alpha, p)$

③ $w \leftarrow \text{Combine}(z^1, \dots, z^s, p)$

④ $e \leftarrow \text{PRG}(w) \oplus (m \parallel r)$

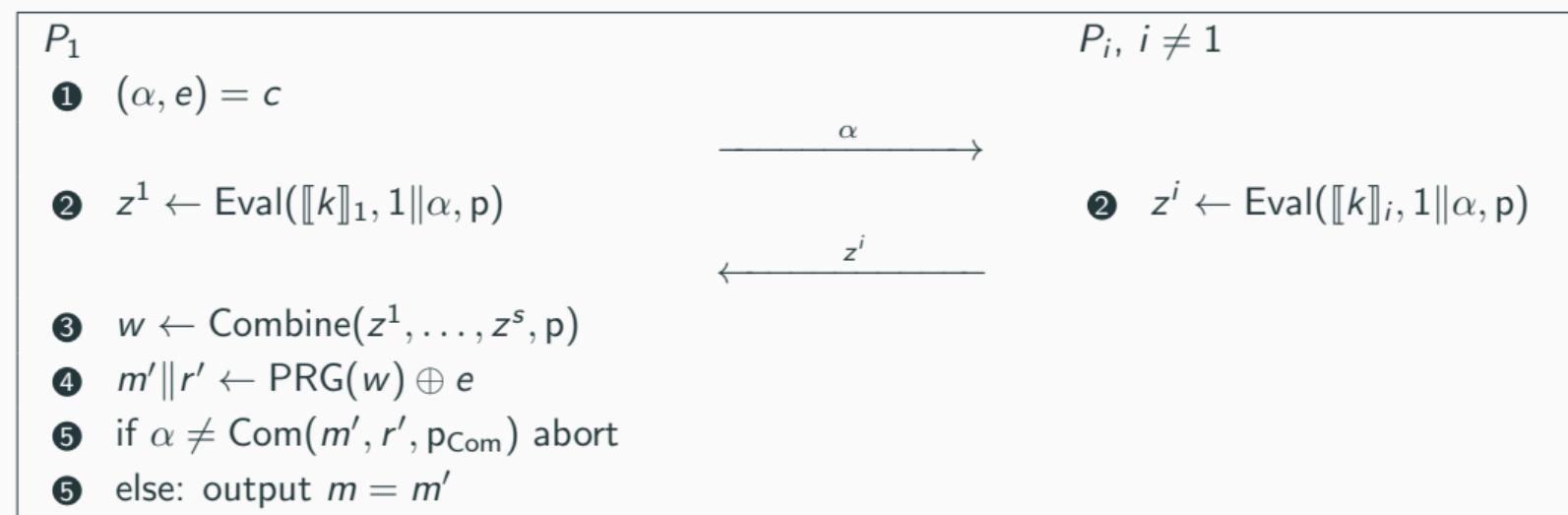
⑤ output $c = (e, \alpha)$

The Decryption Protocol

Setup: Run DPRF and commitment scheme setup;

P_i holds $p, p_{\text{Com}}, \llbracket k \rrbracket_i$

Ciphertext c known to P_1



Instantiating DPRF

for a threshold t -out-of- n sharing

Instantiating DPRF

for a threshold t -out-of- n sharing

PRF-based (Naor, Pinkas, Reingold)

Let F be a PRF.

- choose k_1, \dots, k_d at random
- key share $\llbracket k \rrbracket_i$ is replicated secret sharing using k_1, \dots, k_d as additive shares of the secret
- (after reconstruction) computes $F(k_1, x) \oplus \dots \oplus F(k_d, x)$

Instantiating DPRF

for a threshold t -out-of- n sharing

PRF-based (Naor, Pinkas, Reingold)

Let F be a PRF.

- choose k_1, \dots, k_d at random
- key share $\llbracket k \rrbracket_i$ is replicated secret sharing using k_1, \dots, k_d as additive shares of the secret
- (after reconstruction) computes $F(k_1, x) \oplus \dots \oplus F(k_d, x)$

DDH-based

Let G be a multiplicative cyclic group of prime order p where DDH assumption holds.

$\mathcal{H}(\cdot)$ hashes to G

- $\llbracket k \rrbracket_i$ is a Shamir sharing of a random $s \leftarrow \mathbb{Z}_p$
- $\text{Eval}(\llbracket k \rrbracket_i, x, p) = \mathcal{H}(x)^{\llbracket k \rrbracket_i}$
- (after reconstruction) computes $\mathcal{H}(x)^s$.

→ for $n \leq 24$ PRF-based DPRF is still faster despite exponential overhead

Performance

		Throughput (enc/s)	
n	t	PRF-based	DDH-based
4	2	1 113 090	555
6	2	1 095 770	556
18	6	45 434	297
24	16	445	100

numbers from Fig.9 [AMMR18]

MPC-based Distributed Symmetric-key Encryption

Another Approach: Using MPC

- focus on MPC evaluation of a block cipher
- use a block cipher in a mode of operation to encrypt (see tomorrow's talks)

Another Approach: Using MPC

- focus on MPC evaluation of a block cipher
- use a block cipher in a mode of operation to encrypt (see tomorrow's talks)

Block Cipher

A block cipher $F(k, m) \rightarrow c$ maps a b -bit input m under a λ -bit key to a b -bit output.

Another Approach: Using MPC

- focus on MPC evaluation of a block cipher
- use a block cipher in a mode of operation to encrypt (see tomorrow's talks)

Block Cipher

A block cipher $F(k, m) \rightarrow c$ maps a b -bit input m under a λ -bit key to a b -bit output.

Security?

A secure block cipher behaves like a (independent) pseudo-random permutation for each key

Another Approach: Using MPC

- focus on MPC evaluation of a block cipher
- use a block cipher in a mode of operation to encrypt (see tomorrow's talks)

Block Cipher

A block cipher $F(k, m) \rightarrow c$ maps a b -bit input m under a λ -bit key to a b -bit output.

Security?

A secure block cipher behaves like a (independent) pseudo-random permutation for each key

- Goal: construct MPC protocol to compute $F(\llbracket k \rrbracket, \llbracket m \rrbracket) \rightarrow c$ and $F^{-1}(\llbracket k \rrbracket, c) \rightarrow \llbracket m \rrbracket$.

Additive Secret Sharing

secret $x \in \text{GF}(2^k)$:

- choose x_1, x_2, x_3 at random s.t. $x_1 + x_2 + x_3 = x$
- set $\langle x \rangle_i = x_i$ (for $i \in \{1, 2, 3\}$)

Additive Secret Sharing

secret $x \in \text{GF}(2^k)$:

- choose x_1, x_2, x_3 at random s.t. $x_1 + x_2 + x_3 = x$
- set $\langle x \rangle_i = x_i$ (for $i \in \{1, 2, 3\}$)

Addition/Linear Operation

Addition of secret shared values $\langle x \rangle, \langle y \rangle$

- $\langle x + y \rangle_i = \langle x \rangle_i + \langle y \rangle_i$

Additive Secret Sharing

secret $x \in \text{GF}(2^k)$:

- choose x_1, x_2, x_3 at random s.t. $x_1 + x_2 + x_3 = x$
- set $\langle x \rangle_i = x_i$ (for $i \in \{1, 2, 3\}$)

Addition/Linear Operation

Addition of secret shared values $\langle x \rangle, \langle y \rangle$

- $\langle x + y \rangle_i = \langle x \rangle_i + \langle y \rangle_i$

$$\sum \langle x + y \rangle_i = (\sum \langle x \rangle_i) + (\sum \langle y \rangle_i) = x + y$$

Additive Secret Sharing

secret $x \in \text{GF}(2^k)$:

- choose x_1, x_2, x_3 at random s.t. $x_1 + x_2 + x_3 = x$
- set $\langle x \rangle_i = x_i$ (for $i \in \{1, 2, 3\}$)

Addition/Linear Operation

Addition of secret shared values $\langle x \rangle, \langle y \rangle$

- $\langle x + y \rangle_i = \langle x \rangle_i + \langle y \rangle_i$

$$\sum \langle x + y \rangle_i = (\sum \langle x \rangle_i) + (\sum \langle y \rangle_i) = x + y$$

Multiplication $\langle x \rangle$ by constant $a \in \text{GF}(2^k)$

- $\langle a \cdot x \rangle_i = a \cdot \langle x \rangle_i$

Additive Secret Sharing

secret $x \in \text{GF}(2^k)$:

- choose x_1, x_2, x_3 at random s.t. $x_1 + x_2 + x_3 = x$
- set $\langle x \rangle_i = x_i$ (for $i \in \{1, 2, 3\}$)

Addition/Linear Operation

Addition of secret shared values $\langle x \rangle, \langle y \rangle$

- $\langle x + y \rangle_i = \langle x \rangle_i + \langle y \rangle_i$

$$\sum \langle x + y \rangle_i = (\sum \langle x \rangle_i) + (\sum \langle y \rangle_i) = x + y$$

Multiplication $\langle x \rangle$ by constant $a \in \text{GF}(2^k)$

- $\langle a \cdot x \rangle_i = a \cdot \langle x \rangle_i$

$$\sum \langle a \cdot x \rangle_i = a \cdot (\sum \langle x \rangle_i) = a \cdot x$$

Additive Secret Sharing

secret $x \in \text{GF}(2^k)$:

- choose x_1, x_2, x_3 at random s.t. $x_1 + x_2 + x_3 = x$
- set $\langle x \rangle_i = x_i$ (for $i \in \{1, 2, 3\}$)

Addition/Linear Operation

Addition of secret shared values $\langle x \rangle, \langle y \rangle$

- $\langle x + y \rangle_i = \langle x \rangle_i + \langle y \rangle_i$

$$\sum \langle x + y \rangle_i = (\sum \langle x \rangle_i) + (\sum \langle y \rangle_i) = x + y$$

Multiplication $\langle x \rangle$ by constant $a \in \text{GF}(2^k)$

- $\langle a \cdot x \rangle_i = a \cdot \langle x \rangle_i$

$$\sum \langle a \cdot x \rangle_i = a \cdot (\sum \langle x \rangle_i) = a \cdot x$$

Addition $\langle x \rangle$ with constant $b \in \text{GF}(2^k)$

- $\langle x + b \rangle_1 = \langle x \rangle_1 + b$
- $\langle x + b \rangle_i = \langle x \rangle_i$ for $i \in \{2, 3\}$

Additive Secret Sharing

secret $x \in \text{GF}(2^k)$:

- choose x_1, x_2, x_3 at random s.t. $x_1 + x_2 + x_3 = x$
- set $\langle x \rangle_i = x_i$ (for $i \in \{1, 2, 3\}$)

Addition/Linear Operation

Addition of secret shared values $\langle x \rangle, \langle y \rangle$

- $\langle x + y \rangle_i = \langle x \rangle_i + \langle y \rangle_i$

$$\sum \langle x + y \rangle_i = (\sum \langle x \rangle_i) + (\sum \langle y \rangle_i) = x + y$$

Multiplication $\langle x \rangle$ by constant $a \in \text{GF}(2^k)$

- $\langle a \cdot x \rangle_i = a \cdot \langle x \rangle_i$

$$\sum \langle a \cdot x \rangle_i = a \cdot (\sum \langle x \rangle_i) = a \cdot x$$

Addition $\langle x \rangle$ with constant $b \in \text{GF}(2^k)$

- $\langle x + b \rangle_1 = \langle x \rangle_1 + b$
- $\langle x + b \rangle_i = \langle x \rangle_i$ for $i \in \{2, 3\}$

$$\sum \langle x + b \rangle_i = (\sum \langle x \rangle_i) + b = x + b$$

Replicated Secret Sharing

Here: 3-party RSS (any two parties can reconstruct) \rightarrow can be generalized to t -out-of- n secret $x \in \text{GF}(2^k)$:

Replicated Secret Sharing

Here: 3-party RSS (any two parties can reconstruct) \rightarrow can be generalized to t -out-of- n secret $x \in \text{GF}(2^k)$:

- replicated sharing $\llbracket x \rrbracket_1 = (x_1, x_2)$, $\llbracket x \rrbracket_2 = (x_2, x_3)$ and $\llbracket x \rrbracket_3 = (x_3, x_1)$.

Replicated Secret Sharing

Here: 3-party RSS (any two parties can reconstruct) \rightarrow can be generalized to t -out-of- n secret $x \in \text{GF}(2^k)$:

- replicated sharing $\llbracket x \rrbracket_1 = (x_1, x_2)$, $\llbracket x \rrbracket_2 = (x_2, x_3)$ and $\llbracket x \rrbracket_3 = (x_3, x_1)$.

Linear operation L : $\llbracket L(x) \rrbracket_i = (L(\langle x \rangle_i), L(\langle x \rangle_{i+1}))$ \rightarrow no communication

Squaring/other GF(2)-linear operations: also linear

Multiplication $\llbracket x \rrbracket \cdot \llbracket y \rrbracket$

Given $\langle 0 \rangle$ from preprocessing

- ① Local multiplication $\langle xy \rangle_i = x_i y_i + (x_i + x_{i+1})(y_i + y_{i+1}) \rightarrow$ obtain additive sharing of xy

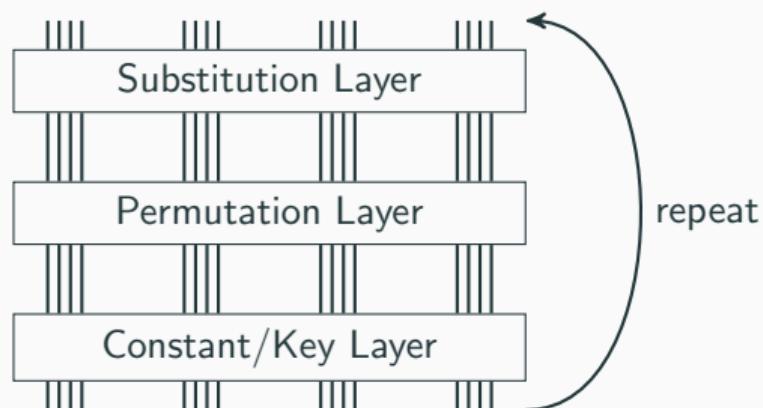
Multiplication $\llbracket x \rrbracket \cdot \llbracket y \rrbracket$

Given $\langle 0 \rangle$ from preprocessing

- ① Local multiplication $\langle xy \rangle_i = x_i y_i + (x_i + x_{i+1})(y_i + y_{i+1}) \rightarrow$ obtain additive sharing of xy
- ② Send $\langle xy \rangle_i + \langle 0 \rangle_i$ to P_{i-1} , set $\llbracket xy \rrbracket_i = (\langle xy \rangle_i + \langle 0 \rangle_i, \langle xy \rangle_{i+1} + \langle 0 \rangle_{i+1})$

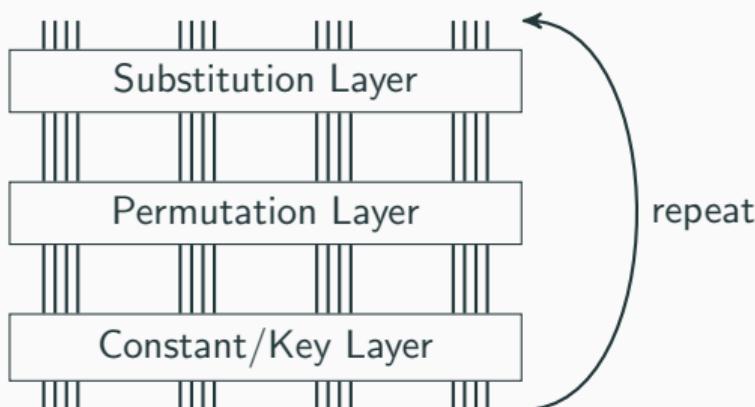
Structure of a SPN Block Cipher

SPN = Substitution-Permutation Network



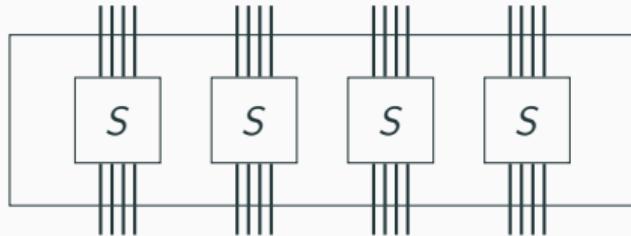
Structure of a SPN Block Cipher

SPN = Substitution-Permutation Network



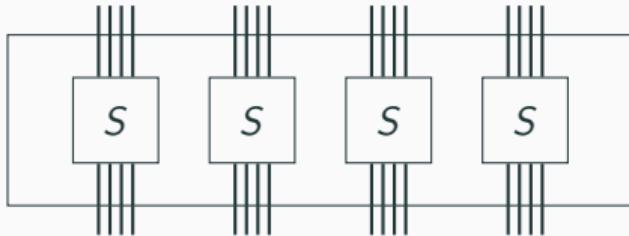
- “algorithm” structure
- substitution: non-linear
- permutation, constant/key layer: linear

The Substitution Layer



Substitution Layer

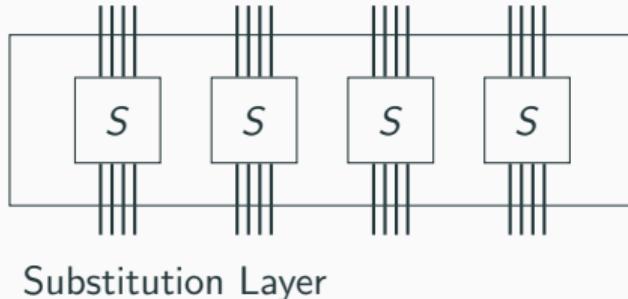
The Substitution Layer



Substitution Layer

S is a very non-linear s -bit to s -bit function
(here: 4-bit to 4-bit)

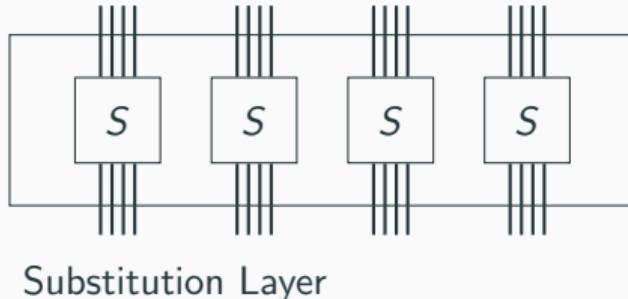
The Substitution Layer



S is a very non-linear s -bit to s -bit function
(here: 4-bit to 4-bit)

How to represent it with secret-independent
control flow?

The Substitution Layer



S is a very non-linear s -bit to s -bit function
(here: 4-bit to 4-bit)

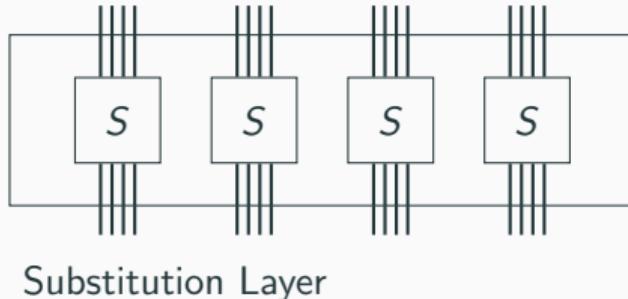
How to represent it with secret-independent
control flow?

A couple of approaches:

represent S

- ① as Boolean circuit
- ② as (uni-variate) polynomial
- ③ as oblivious table lookup

The Substitution Layer



S is a very non-linear s -bit to s -bit function
(here: 4-bit to 4-bit)

How to represent it with secret-independent
control flow?

A couple of approaches:

represent S

- ① as Boolean circuit
- ② as (uni-variate) polynomial
- ③ as oblivious table lookup

similar approaches in literature for
constant-time / software side-channel
protection for block ciphers!

Useful/MPC-friendly Properties

What properties should the approach have?

- Low multiplicative complexity:
 - low total number of multiplications/AND gates
 - $R \times n_S \times \text{mult}_S$

Useful/MPC-friendly Properties

What properties should the approach have?

- Low multiplicative complexity:
 - low total number of multiplications/AND gates
 - $R \times n_S \times \text{mult}_S$
- Low multiplicative depth:
 - round-based structure: $R \times \text{rounds}_S$ in total

AES as Example

Prelude: Galois Fields

We write $\text{GF}(2^k) = \mathbb{F}_2[X]/F(X)$

- $F(X)$ irreducible polynomial of degree k :
$$F(X) = X^4 + X + 1$$
- element $x \in \text{GF}(2^k)$: polynomial of degree $< k$:
$$X^2 + X + 1$$

We write $\text{GF}(2^k) = \mathbb{F}_2[X]/F(X)$

- $F(X)$ irreducible polynomial of degree k :
$$F(X) = X^4 + X + 1$$
- element $x \in \text{GF}(2^k)$: polynomial of degree $< k$:
$$X^2 + X + 1$$

Addition

coefficient-wise addition in \mathbb{F}_2

$$(X^3 + 1) + (X^2 + X + 1) = X^3 + X^2 + X$$

Multiplication

polynomial multiplication modulo $F(X)$

schoolbook division: $(X^3 + 1) \cdot (X^2 + X + 1) = (X^5 + X^4 + X^3 + X^2 + X + 1) \bmod F(X)$

Multiplication

polynomial multiplication modulo $F(X)$

$$\text{schoolbook division: } (X^3 + 1) \cdot (X^2 + X + 1) = (X^5 + X^4 + X^3 + X^2 + X + 1) \bmod F(X)$$

$$\begin{array}{r}
 X^5 + X^4 + X^3 + X^2 + X + 1 \\
 - X^5 \\
 \hline
 X^4 + X^3 + 1 \\
 - X^4 - X - 1 \\
 \hline
 X^3 + X
 \end{array} \quad / (X^4 + X + 1) = X + 1$$

Multiplication

polynomial multiplication modulo $F(X)$

$$\text{schoolbook division: } (X^3 + 1) \cdot (X^2 + X + 1) = (X^5 + X^4 + X^3 + X^2 + X + 1) \bmod F(X)$$

$$\begin{array}{r}
 X^5 + X^4 + X^3 + X^2 + X + 1 \\
 - X^5 \\
 \hline
 X^4 + X^3 + 1 \\
 - X^4 - X - 1 \\
 \hline
 X^3 + X
 \end{array} \quad / (X^4 + X + 1) = X + 1$$

$$\rightarrow (X^3 + 1) \cdot (X^2 + X + 1) \bmod F(X) = X^3 + X$$

Multiplication

polynomial multiplication modulo $F(X)$

$$\text{schoolbook division: } (X^3 + 1) \cdot (X^2 + X + 1) = (X^5 + X^4 + X^3 + X^2 + X + 1) \bmod F(X)$$

$$\begin{array}{r}
 X^5 + X^4 + X^3 + X^2 + X + 1 \\
 - X^5 \\
 \hline
 X^4 + X^3 + 1 \\
 - X^4 - X - 1 \\
 \hline
 X^3 + X
 \end{array}
 \quad / (X^4 + X + 1) = X + 1$$

$$\rightarrow (X^3 + 1) \cdot (X^2 + X + 1) \bmod F(X) = X^3 + X$$

We write binary encoding: $13 = 2^3 + 2^2 + 2^0 = (X^3 + X^2 + 1)$

The AES

- AES = Advanced Encryption Standard
- Rijndael block cipher standardized by NIST 2001
- block size: 128-bit
- key sizes: **128-bit**, 192-bit, 256-bit
- Block cipher composed of 10 rounds (AES-128)
- defined over $GF(2^8) = \mathbb{F}_2[X]/X^8 + X^4 + X^3 + X + 1$.

- 128-bit Input: $b_0 b_1 \dots b_{127}$
 - group by 8: $\underbrace{(b_0 b_1 \dots b_7)}_{s_0} \underbrace{(b_8 \dots)}_{s_1} \dots \underbrace{(\dots b_{127})}_{s_{15}}$

- 128-bit Input: $b_0 b_1 \dots b_{127}$
 - group by 8: $\underbrace{(b_0 b_1 \dots b_7)}_{s_0} \underbrace{(b_8 \dots)}_{s_1} \dots \underbrace{(\dots b_{127})}_{s_{15}}$
 - arrange column-first in 4×4 matrix

$$\text{state} = \begin{pmatrix} s_0 & s_4 & s_8 & s_{12} \\ s_1 & s_5 & s_9 & s_{13} \\ s_2 & s_6 & s_{10} & s_{14} \\ s_3 & s_7 & s_{11} & s_{15} \end{pmatrix}$$

- 128-bit Input: $b_0 b_1 \dots b_{127}$
 - group by 8: $\underbrace{(b_0 b_1 \dots b_7)}_{s_0} \underbrace{(b_8 \dots)}_{s_1} \dots \underbrace{(\dots b_{127})}_{s_{15}}$
 - arrange column-first in 4×4 matrix

$$\text{state} = \begin{pmatrix} s_0 & s_4 & s_8 & s_{12} \\ s_1 & s_5 & s_9 & s_{13} \\ s_2 & s_6 & s_{10} & s_{14} \\ s_3 & s_7 & s_{11} & s_{15} \end{pmatrix}$$

- Key Schedule takes 128-bit key: produces 11 round keys

$$\underbrace{\begin{pmatrix} rk_0^{(0)} & rk_4^{(0)} & rk_8^{(0)} & rk_{12}^{(0)} \\ rk_1^{(0)} & rk_5^{(0)} & rk_9^{(0)} & rk_{13}^{(0)} \\ rk_2^{(0)} & rk_6^{(0)} & rk_{10}^{(0)} & rk_{14}^{(0)} \\ rk_3^{(0)} & rk_7^{(0)} & rk_{11}^{(0)} & rk_{15}^{(0)} \end{pmatrix}}_{RK_0} \dots \underbrace{\begin{pmatrix} rk_0^{(10)} & rk_4^{(10)} & rk_8^{(10)} & rk_{12}^{(10)} \\ rk_1^{(10)} & rk_5^{(10)} & rk_9^{(10)} & rk_{13}^{(10)} \\ rk_2^{(10)} & rk_6^{(10)} & rk_{10}^{(10)} & rk_{14}^{(10)} \\ rk_3^{(10)} & rk_7^{(10)} & rk_{11}^{(10)} & rk_{15}^{(10)} \end{pmatrix}}_{RK_{10}}$$

AES Round Function

- ① SubBytes: $S\text{-box}(s_i) = f(s_i^{-1})$

AES Round Function

① SubBytes: $S\text{-box}(s_i) = f(s_i^{-1})$

② ShiftRows:
$$\begin{pmatrix} s_0 & s_4 & s_8 & s_{12} \\ s_1 & s_5 & s_9 & s_{13} \\ s_2 & s_6 & s_{10} & s_{14} \\ s_3 & s_7 & s_{11} & s_{15} \end{pmatrix} \rightarrow \begin{pmatrix} s_0 & s_4 & s_8 & s_{12} \\ s_5 & s_9 & s_{13} & s_1 \\ s_{10} & s_{14} & s_2 & s_6 \\ s_{15} & s_3 & s_7 & s_{11} \end{pmatrix}$$

AES Round Function

① SubBytes: $S\text{-box}(s_i) = f(s_i^{-1})$

② ShiftRows:
$$\begin{pmatrix} s_0 & s_4 & s_8 & s_{12} \\ s_1 & s_5 & s_9 & s_{13} \\ s_2 & s_6 & s_{10} & s_{14} \\ s_3 & s_7 & s_{11} & s_{15} \end{pmatrix} \rightarrow \begin{pmatrix} s_0 & s_4 & s_8 & s_{12} \\ s_5 & s_9 & s_{13} & s_1 \\ s_{10} & s_{14} & s_2 & s_6 \\ s_{15} & s_3 & s_7 & s_{11} \end{pmatrix}$$

③ MixColumns:
$$\begin{pmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{pmatrix} \cdot \begin{pmatrix} s_0 & s_4 & s_8 & s_{12} \\ s_1 & s_5 & s_9 & s_{13} \\ s_2 & s_6 & s_{10} & s_{14} \\ s_3 & s_7 & s_{11} & s_{15} \end{pmatrix}$$

AES Round Function

① SubBytes: $S\text{-box}(s_i) = f(s_i^{-1})$

② ShiftRows:
$$\begin{pmatrix} s_0 & s_4 & s_8 & s_{12} \\ s_1 & s_5 & s_9 & s_{13} \\ s_2 & s_6 & s_{10} & s_{14} \\ s_3 & s_7 & s_{11} & s_{15} \end{pmatrix} \rightarrow \begin{pmatrix} s_0 & s_4 & s_8 & s_{12} \\ s_5 & s_9 & s_{13} & s_1 \\ s_{10} & s_{14} & s_2 & s_6 \\ s_{15} & s_3 & s_7 & s_{11} \end{pmatrix}$$

③ MixColumns:
$$\begin{pmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{pmatrix} \cdot \begin{pmatrix} s_0 & s_4 & s_8 & s_{12} \\ s_1 & s_5 & s_9 & s_{13} \\ s_2 & s_6 & s_{10} & s_{14} \\ s_3 & s_7 & s_{11} & s_{15} \end{pmatrix}$$

④ AddRoundKey: $\text{state} + R\mathbf{K}_r$

AES S-box as Boolean Circuit

due to Boyar and Peralta [BP10]: 32 AND gates, 83 XOR gates

AES S-box as Boolean Circuit

due to Boyar and Peralta [BP10]: 32 AND gates, 83 XOR gates

$y_{14} = x_3 + x_5$	$y_{13} = x_0 + x_6$	$y_9 = x_0 + x_3$
$y_8 = x_0 + x_5$	$t_0 = x_1 + x_2$	$y_1 = t_0 + x_7$
$y_4 = y_1 + x_3$	$y_{12} = y_{13} + y_{14}$	$y_2 = y_1 + x_0$
$y_5 = y_1 + x_6$	$y_3 = y_5 + y_8$	$t_1 = x_4 + y_{12}$
$y_{15} = t_1 + x_5$	$y_{20} = t_1 + x_1$	$y_6 = y_{15} + x_7$
$y_{10} = y_{15} + t_0$	$y_{11} = y_{20} + y_9$	$y_7 = x_7 + y_{11}$
$y_{17} = y_{10} + y_{11}$	$y_{19} = y_{10} + y_8$	$y_{16} = t_0 + y_{11}$
$y_{21} = y_{13} + y_{16}$	$y_{18} = x_0 + y_{16}$	

$t_{46} = z_{15} + z_{16}$	$t_{47} = z_{10} + z_{11}$	$t_{48} = z_5 + z_{13}$
$t_{49} = z_9 + z_{10}$	$t_{50} = z_2 + z_{12}$	$t_{51} = z_2 + z_5$
$t_{52} = z_7 + z_8$	$t_{53} = z_0 + z_3$	$t_{54} = z_6 + z_7$
$t_{55} = z_{16} + z_{17}$	$t_{56} = z_{12} + t_{48}$	$t_{57} = t_{50} + t_{53}$
$t_{58} = z_4 + t_{46}$	$t_{59} = z_3 + t_{54}$	$t_{60} = t_{46} + t_{57}$
$t_{61} = z_{14} + t_{57}$	$t_{62} = t_{52} + t_{58}$	$t_{63} = t_{49} + t_{58}$
$t_{64} = z_4 + t_{59}$	$t_{65} = t_{61} + t_{62}$	$t_{66} = z_1 + t_{63}$
$s_0 = t_{59} + t_{63}$	$s_6 = t_{56}$ XNOR t_{62}	$s_7 = t_{48}$ XNOR t_{60}
$t_{67} = t_{64} + t_{65}$	$s_3 = t_{53} + t_{66}$	$s_4 = t_{51} + t_{66}$
$s_5 = t_{47} + t_{65}$	$s_1 = t_{64}$ XNOR s_3	$s_2 = t_{55}$ XNOR t_{67}

$t_2 = y_{12} \times y_{15}$	$t_3 = y_3 \times y_6$	$t_4 = t_3 + t_2$
$t_5 = y_4 \times x_7$	$t_6 = t_5 + t_2$	$t_7 = y_{13} \times y_{16}$
$t_8 = y_5 \times y_1$	$t_9 = t_8 + t_7$	$t_{10} = y_2 \times y_7$
$t_{11} = t_{10} + t_7$	$t_{12} = y_9 \times y_{11}$	$t_{13} = y_{14} \times y_{17}$
$t_{14} = t_{13} + t_{12}$	$t_{15} = y_8 \times y_{10}$	$t_{16} = t_{15} + t_{12}$
$t_{17} = t_4 + t_{14}$	$t_{18} = t_6 + t_{16}$	$t_{19} = t_9 + t_{14}$
$t_{20} = t_{11} + t_{16}$	$t_{21} = t_{17} + y_{20}$	$t_{22} = t_{18} + y_{19}$
$t_{23} = t_{19} + y_{21}$	$t_{24} = t_{20} + y_{18}$	
$t_{25} = t_{21} + t_{22}$	$t_{26} = t_{21} \times t_{23}$	$t_{27} = t_{24} + t_{26}$
$t_{28} = t_{25} \times t_{27}$	$t_{29} = t_{28} + t_{22}$	$t_{30} = t_{23} + t_{24}$
$t_{31} = t_{22} + t_{26}$	$t_{32} = t_{31} \times t_{30}$	$t_{33} = t_{32} + t_{24}$
$t_{34} = t_{23} + t_{33}$	$t_{35} = t_{27} + t_{33}$	$t_{36} = t_{24} \times t_{35}$
$t_{37} = t_{36} + t_{34}$	$t_{38} = t_{27} + t_{36}$	$t_{39} = t_{29} \times t_{38}$
$t_{40} = t_{25} + t_{39}$		
$t_{41} = t_{40} + t_{37}$	$t_{42} = t_{29} + t_{33}$	$t_{43} = t_{29} + t_{40}$
$t_{44} = t_{33} + t_{37}$	$t_{45} = t_{42} + t_{41}$	$z_0 = t_{44} \times y_{15}$
$z_1 = t_{37} \times y_6$	$z_2 = t_{33} \times x_7$	$z_3 = t_{43} \times y_{16}$
$z_4 = t_{40} \times y_1$	$z_5 = t_{29} \times y_7$	$z_6 = t_{42} \times y_{11}$
$z_7 = t_{45} \times y_{17}$	$z_8 = t_{41} \times y_{10}$	$z_9 = t_{44} \times y_{12}$
$z_{10} = t_{37} \times y_3$	$z_{11} = t_{33} \times y_4$	$z_{12} = t_{43} \times y_{13}$
$z_{13} = t_{40} \times y_5$	$z_{14} = t_{29} \times y_2$	$z_{15} = t_{42} \times y_9$
$z_{16} = t_{45} \times y_{14}$	$z_{17} = t_{41} \times y_8$	

→ in circuit form: <https://nigelsmart.github.io/MPC-Circuits/>

Cost: 32 GF(2) multiplications in 6 rounds

AES S-box as Polynomial

Goal: find $P(Z)$ s.t.

$$P(0) = f(0)$$

$$P(1) = f(1)$$

$$P(2) = f(2^{-1})$$

⋮

$$P(255) = f(255^{-1})$$

AES S-box as Polynomial

Goal: find $P(Z)$ s.t.

$$P(0) = f(0)$$

$$P(1) = f(1)$$

$$P(2) = f(2^{-1})$$

⋮

$$P(255) = f(255^{-1})$$

Approach 1: due to [DKLMS12]

$$\begin{aligned} P(z) = & 0x63 + 0x8Fz^{127} + 0xB5z^{191} + z^{223} + 0xF4z^{239} + 0x25z^{247} \\ & + 0xF9z^{251} + 0x09z^{253} + 0x05z^{254} \end{aligned}$$

AES S-box as Polynomial

Goal: find $P(Z)$ s.t.

$$P(0) = f(0)$$

$$P(1) = f(1)$$

$$P(2) = f(2^{-1})$$

⋮

$$P(255) = f(255^{-1})$$

Approach 1: due to [DKLMS12]

$$\begin{aligned} P(z) = & 0x63 + 0x8Fz^{127} + 0xB5z^{191} + z^{223} + 0xF4z^{239} + 0x25z^{247} \\ & + 0xF9z^{251} + 0x09z^{253} + 0x05z^{254} \end{aligned}$$

Cost: shortest addition chain for the set $\{127, 191, 223, 239, 247, 251, 253, 254\}$

- 18 secure multiplications in $\text{GF}(2^8)$ in 12 rounds

Approach 2: Using BitDecomposition

BitDecomposition: $\llbracket b_7X^7 + \dots + b_1X + b_0 \rrbracket \rightarrow \llbracket b_7 \rrbracket, \dots, \llbracket b_1 \rrbracket, \llbracket b_0 \rrbracket$
→ computing $z^2 \in \text{GF}(2^8)$ is bit-linear!

Approach 2: Using BitDecomposition

BitDecomposition: $\llbracket b_7X^7 + \dots + b_1X + b_0 \rrbracket \rightarrow \llbracket b_7 \rrbracket, \dots, \llbracket b_1 \rrbracket, \llbracket b_0 \rrbracket$
→ computing $z^2 \in \text{GF}(2^8)$ is bit-linear!

- Observation: $f(z^{-1}) = f(z^{254})$ (since 0 is mapped to 0)

Approach 2: Using BitDecomposition

BitDecomposition: $\llbracket b_7X^7 + \dots + b_1X + b_0 \rrbracket \rightarrow \llbracket b_7 \rrbracket, \dots, \llbracket b_1 \rrbracket, \llbracket b_0 \rrbracket$
→ computing $z^2 \in \text{GF}(2^8)$ is bit-linear!

- Observation: $f(z^{-1}) = f(z^{254})$ (since 0 is mapped to 0)
- write z^{254} as

$$\textcircled{1} \quad z^3 = z \cdot z^2 \quad (1 \text{ mult.})$$

$$\textcircled{2} \quad z^{15} = (z^3)^4 \cdot z^3, z^{14} = (z^3)^4 \cdot z^2 \quad (2 \text{ mult.})$$

$$\textcircled{3} \quad z^{254} = (z^{15})^{16} \cdot z^{14} \quad (1 \text{ mult.})$$

Approach 2: Using BitDecomposition

BitDecomposition: $\llbracket b_7X^7 + \dots + b_1X + b_0 \rrbracket \rightarrow \llbracket b_7 \rrbracket, \dots, \llbracket b_1 \rrbracket, \llbracket b_0 \rrbracket$
→ computing $z^2 \in \text{GF}(2^8)$ is bit-linear!

- Observation: $f(z^{-1}) = f(z^{254})$ (since 0 is mapped to 0)
- write z^{254} as

- ❶ $z^3 = z \cdot z^2$ (1 mult.)
- ❷ $z^{15} = (z^3)^4 \cdot z^3, z^{14} = (z^3)^4 \cdot z^2$ (2 mult.)
- ❸ $z^{254} = (z^{15})^{16} \cdot z^{14}$ (1 mult.)

Cost: 4 $\text{GF}(2^8)$ multiplications in 3 rounds

cf. [DK10], [CHIKP18]

Approach 3: Using Tower Fields [MPSSTT25]

Isomorphism $\phi : \text{GF}(2^8) \rightarrow \text{GF}(2^4)^2$

① $\phi(z) = (a_h, a_\ell)$

Approach 3: Using Tower Fields [MPSSTT25]

Isomorphism $\phi : \text{GF}(2^8) \rightarrow \text{GF}(2^4)^2$

- ① $\phi(z) = (a_h, a_\ell)$
- ② $v = ea_h^2 + a_h \cdot a_\ell + a_\ell^2$ (1 mult.)
- ③ $v^{-1} = v^2 \cdot v^4 \cdot v^8$ (2 mult.)

Approach 3: Using Tower Fields [MPSSTT25]

Isomorphism $\phi : \text{GF}(2^8) \rightarrow \text{GF}(2^4)^2$

- ① $\phi(z) = (a_h, a_\ell)$
- ② $v = ea_h^2 + a_h \cdot a_\ell + a_\ell^2$ (1 mult.)
- ③ $v^{-1} = v^2 \cdot v^4 \cdot v^8$ (2 mult.)
- ④ $z^{-1} = \phi^{-1}(a_h \cdot v^{-1}, (a_h + a_\ell) \cdot v^{-1})$ (2 mult.)

Approach 3: Using Tower Fields [MPSSTT25]

Isomorphism $\phi : \text{GF}(2^8) \rightarrow \text{GF}(2^4)^2$

① $\phi(z) = (a_h, a_\ell)$

② $v = ea_h^2 + a_h \cdot a_\ell + a_\ell^2$ (1 mult.)

③ $v^{-1} = v^2 \cdot v^4 \cdot v^8$ (2 mult.)

④ $z^{-1} = \phi^{-1}(a_h \cdot v^{-1}, (a_h + a_\ell) \cdot v^{-1})$ (2 mult.)

Cost: 5 $\text{GF}(2^4)$ multiplications in 4 rounds

Oblivious Table Lookup Protocol

Goal: compute table lookup LUT $\llbracket T[x] \rrbracket$ from table T and $\llbracket x \rrbracket$

Oblivious Table Lookup Protocol

Goal: compute table lookup LUT $\llbracket T[x] \rrbracket$ from table T and $\llbracket x \rrbracket$

given *random one-hot vector* correlation from preprocessing $\llbracket r \rrbracket, \llbracket e^{(r)} \rrbracket$

$$\llbracket e^{(r)} \rrbracket = (\underbrace{\llbracket 0 \rrbracket, \dots, \llbracket 0 \rrbracket}_{r}, \llbracket 1 \rrbracket, \llbracket 0 \rrbracket, \dots)$$

Oblivious Table Lookup Protocol

Goal: compute table lookup LUT $\llbracket T[x] \rrbracket$ from table T and $\llbracket x \rrbracket$

given *random one-hot vector* correlation from preprocessing $\llbracket r \rrbracket, \llbracket e^{(r)} \rrbracket$

$$\llbracket e^{(r)} \rrbracket = (\underbrace{\llbracket 0 \rrbracket, \dots, \llbracket 0 \rrbracket}_r, \llbracket 1 \rrbracket, \llbracket 0 \rrbracket, \dots)$$

- ➊ Reveal value $c = r + x$
- ➋ Local computation $\llbracket T[x] \rrbracket = \sum_i T[c - i] \cdot \llbracket e_i^{(r)} \rrbracket$

AES S-box as Oblivious Table Lookup

AES S-box table: 256 elements

→ costly preprocessing of length-256 random one-hot vector (≈ 247 bit-multiplications)

AES S-box as Oblivious Table Lookup

AES S-box table: 256 elements

→ costly preprocessing of length-256 random one-hot vector (≈ 247 bit-multiplications)

MAESTRO (3-party, honest majority) [MPSSTT25]

using replicated secret sharing reduce cost with a trick

Better preprocessing:

AES S-box as Oblivious Table Lookup

AES S-box table: 256 elements

→ costly preprocessing of length-256 random one-hot vector (≈ 247 bit-multiplications)

MAESTRO (3-party, honest majority) [MPSSTT25]

using replicated secret sharing reduce cost with a trick

Better preprocessing:

- ➊ obtain 2 length-16 random one-hot vectors: $\llbracket u \rrbracket, \llbracket e^{(u)} \rrbracket$ and $\llbracket v \rrbracket, \llbracket e^{(v)} \rrbracket$

AES S-box as Oblivious Table Lookup

AES S-box table: 256 elements

→ costly preprocessing of length-256 random one-hot vector (≈ 247 bit-multiplications)

MAESTRO (3-party, honest majority) [MPSSTT25]

using replicated secret sharing reduce cost with a trick

Better preprocessing:

- ➊ obtain 2 length-16 random one-hot vectors: $\llbracket u \rrbracket, \llbracket \mathbf{e}^{(u)} \rrbracket$ and $\llbracket v \rrbracket, \llbracket \mathbf{e}^{(v)} \rrbracket$
- ➋ *local* tensor product $\langle \mathbf{e}^{(r)} \rangle \leftarrow \llbracket \mathbf{e}^{(u)} \rrbracket \otimes \llbracket \mathbf{e}^{(v)} \rrbracket$
where $r = u \| v$

AES S-box as Oblivious Table Lookup

AES S-box table: 256 elements

→ costly preprocessing of length-256 random one-hot vector (≈ 247 bit-multiplications)

MAESTRO (3-party, honest majority) [MPSSTT25]

using replicated secret sharing reduce cost with a trick

Better preprocessing:

- ① obtain 2 length-16 random one-hot vectors: $\llbracket u \rrbracket, \llbracket \mathbf{e}^{(u)} \rrbracket$ and $\llbracket v \rrbracket, \llbracket \mathbf{e}^{(v)} \rrbracket$
- ② *local* tensor product $\langle \mathbf{e}^{(r)} \rangle \leftarrow \llbracket \mathbf{e}^{(u)} \rrbracket \otimes \llbracket \mathbf{e}^{(v)} \rrbracket$
where $r = u \| v$
- ③ output $(\llbracket r \rrbracket, \langle \mathbf{e}^{(r)} \rangle)$

AES S-box as Oblivious Table Lookup

AES S-box table: 256 elements

→ costly preprocessing of length-256 random one-hot vector (≈ 247 bit-multiplications)

MAESTRO (3-party, honest majority) [MPSSTT25]

using replicated secret sharing reduce cost with a trick

Better preprocessing:

- ➊ obtain 2 length-16 random one-hot vectors: $\llbracket u \rrbracket, \llbracket \mathbf{e}^{(u)} \rrbracket$ and $\llbracket v \rrbracket, \llbracket \mathbf{e}^{(v)} \rrbracket$
- ➋ *local* tensor product $\langle \mathbf{e}^{(r)} \rangle \leftarrow \llbracket \mathbf{e}^{(u)} \rrbracket \otimes \llbracket \mathbf{e}^{(v)} \rrbracket$
where $r = u \| v$
- ➌ output $(\llbracket r \rrbracket, \langle \mathbf{e}^{(r)} \rangle)$

→ cost: 22 GF(2) multiplications in 2 rounds (preprocessing)

→ cost: 16 bits in 1 round (online)

Performance

→ measure throughput in AES blocks/s

Protocol	Throughput (blocks/s)		Throughput (blocks/s)		Throughput (blocks/s)	
	Online	Total	Online	Total	Online	Total
Polynomial Approach 2	568 504	568 504	124 290	124 290	13 392	13 392
Polynomial Approach 3	729 822	729 822	179 369	179 369	18 497	18 497
Oblv. Table Lookup	641 302	108 114	148 917	39 156	16 574	5 216
Network	10 Gbit/s ≤ 1ms RTT		1 Gbit/s ≤ 1ms RTT		100 MBit/s 30ms RTT	

semi-honest security, 16-core 128GB RAM

→ measure throughput in AES blocks/s

Protocol	Throughput (blocks/s)					
	Online	Total	Online	Total	Online	Total
Polynomial Approach 2*	152 127	10 100	33 646	4 490	4 707	1 039
Polynomial Approach 3	48 924	48 924	18 829	18 829	5 396	5 396
Oblv. Table Lookup	32 508	25 409	13 547	10 560	3 370	2 345
Network	10 Gbit/s ≤ 1ms RTT			1 Gbit/s ≤ 1ms RTT		100 MBit/s 30ms RTT

* with [FLNW17]

active security, 16-core 128GB RAM

Thank you!

References

- [AMMR18] Agrawal, Mohassel, Mukherjee and Rindal, DiSE: Distributed Symmetric-key Encryption, *CCS*, 2018.
- [BP10] Boyar and Peralta, A new combinational logic minimization technique with applications to cryptology, *International Symposium on Experimental Algorithms*, 2010.
- [CHIKP18] Chida, Hamada, Ikarashi, Kikuchi and Pinkas, High-Throughput Secure AES Computation, *WAHC*, 2018.
- [DK10] Damgård and Keller, Secure Multiparty AES, *FC*, 2010.
- [DKLMS12] Damgård, Keller, Larraia, Miles and Smart, Implementing AES via an Actively/Covertly Secure Dishonest-Majority MPC Protocol, *SCN*, 2012.
- [FLNW17] Furukawa, Lindell, Nof and Weinstein, High-throughput secure three-party computation for malicious adversaries and an honest majority, *Eurocrypt*, 2017.
- [MPSSTT25] Morita, Pohle, Sadakane, Scholl, Tozawa and Tschudi, MAESTRO: Multi-Party AES Using Lookup Tables, *Usenix Security*, 2025.