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MPC-based Distributed Encryption
for AES
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® Alice and Bob share a secret key k
® Alice computes ¢ + Enc(k, m)
® Alice sends c to Bob

® Bob computes m < Dec(k, c)

The adversary does not know k

Cannot learn anything about m given ¢
IND-CPA, IND-CCA

Examples

AES-CBC, AES-GCM, ChaCha20-Poly1305, ...
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Distributed Decryption

Protocol 1

Py knows c, [k]1
P,' knows [[k]],‘, 17é 1

@ Parties run distributed decryption protocol
® P; outputs m

Protocol NM; = DIiSE

Protocol T,

P; knows [k];, c
@ Parties run distributed decryption protocol
@® P; outputs [m];

My = MPC-based distributed
encryption/decryption
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Desirable Properties

Correctness
¢ = Enc(k, m)

Privacy

® Corrupted P; cannot learn anything about k
® (M) If Py is honest, P; cannot learn anything about m (except for its length)
® (My) P; cannot learn anything about m (except for its length)

Authenticity

A corrupted party cannot forge a message

e A corrupted P; cannot make honest parties output m’ given ¢’



Applications

Protect Keys in Use: Encrypted Storage
Py P> Py P>

[ [
N /[[ku N /[[kﬂ

untrusted storage
I[[k]] I[[k]]

— secret key k is shared among Py, P», P3
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Oblivious PRFs
Py P>

m k
’i—F\i‘
— keyword search, secure

¢ database joins

— private set intersection,
pattern matching

Distributed Encryption/Decryption

Client Sil S
d [41 [
¢ = Enck(d) - =
Deck(c)
Ll
Processing

— transciphering, “encrypt to the future”

virtual hardware security module
Py P>

\ .
CMAC(-)

HMAC(:)

!

Ps

fffff > output

— protect cryptographic keys during use
— decentralize Kerberos Key Distribution Center

— distributed authentication /identification

systems

NIST threshold cryptography project:
https://csrc.nist.gov/projects/
threshold-cryptography


https://csrc.nist.gov/projects/threshold-cryptography
https://csrc.nist.gov/projects/threshold-cryptography

Distributed Symmetric-key
Encryption (DiSE)



Distributed Symmetric-key Encryption (DiSE) [AMMR18]

Paper by Visa Research in CCS'18 with a few follow-up works
Main Idea:

@ Initiating party P; derives randomness « from m

@® All parties compute w < DPRF(k, «), Py obtains w
© P encrypts m with w

@ P; outputs ¢ = (“Enc” (w, m), @)

10



Distributed Pseudo-random Function (DPRF)

Syntax:
° Setup - [[kﬂla 0o0g Hkﬂm p
e Eval([k];, x,p) — 2’

® Combine(zt,...,z°,p) = z

11



Distributed Pseudo-random Function (DPRF)

Properties

Pseudo-random
Syntax:

® Setup — [k]1,..., [K]n, P
® Eval([k]i, x,p) — 2

Output z is indistinguishable from output of a

random function

. Correctness

® Combine(zt,...,z°,p) = z .
By sending z/’/, corrupted parties cannot bias z
— honest parties either output z or abort

11



Commitment Scheme

Syntax:
® SetupCom — PCom

® Com(x, r,pcom) — «

12



Commitment Scheme

Syntax:
® SetupCom — PCom

® Com(x, r,pcom) — «

Properties

Hiding

Output « hides x (for random r)
Binding

The adversary cannot produce (xo, ro) # (x1, )
where Com(xo, o, pcom) = Com(x1, 1, Pcom)

12



The Encryption Protocol

Setup: Run DPRF and commitment scheme setup;
P; holds p, pcom, [K]i
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The Encryption Protocol

Setup: Run DPRF and commitment scheme setup;
P; holds p, pcom, [K]i

Message m known to P;

Py P, i#1
® o« Com(m,r,pcom) for a fresh
random r

® '« Eval([];, 1], p)
@ z' « Eval([K]:, 1, p)
©® w < Combine(z!,...,z%p)

0 e« PRG(w) & (ml|r)
@ output c = (e, )

13




The Decryption Protocol

Setup: Run DPRF and commitment scheme setup;
P; holds p, pcom, [K]i

Ciphertext ¢ known to Py

Py Pi,i#1

® (ve)=c
e

® z' «+ Eval([k]1, 1], p) ® 7' « Eval([K];, 1|, p)
w2

® w < Combine(z!,..., 2% p)

@ m|r < PRG(w)®e

@ if a# Com(m',r', pcom) abort

@ else: output m=m’

14



Instantiating DPRF

for a threshold t-out-of-n sharing
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Instantiating DPRF

for a threshold t-out-of-n sharing
PRF-based (Naor, Pinkas, Reingold)
Let F be a PRF.
® choose ki,...,ky at random
® key share [[k]; is replicated secret sharing using ki, ..., kg as additive shares of the secret

® (after reconstruction) computes F(ki,x) ® --- ® F(kg, Xx)

DDH-based

Let G be a multiplicative cyclic group of prime order p where DDH assumption holds.
H(-) hashes to G

® [k]; is a Shamir sharing of a random s < Zj,
o Eval([K];, x, p) = H(x) 4l

® (after reconstruction) computes H(x)s.

— for n < 24 PRF-based DPRF is still faster despite exponential overhead
15



Performance

Throughput (enc/s)
n t PRF-based DDH-based

4 2 1113 090 555
6 2 1095 770 556
18 6 45 434 297
24 16 445 100

numbers from Fig.9 [AMMR18]

16



MPC-based Distributed
Symmetric-key Encryption

17



Another Approach: Using MPC

® focus on MPC evaluation of a block cipher

® use a block cipher in a mode of operation to encrypt (see tomorrow's talks)
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Another Approach: Using MPC

® focus on MPC evaluation of a block cipher

® use a block cipher in a mode of operation to encrypt (see tomorrow's talks)

Block Cipher

A block cipher F(k, m) — ¢ maps a b-bit input m under a A-bit key to a b-bit output.

A secure block cipher behaves like a (independent) pseudo-random permutation for each key

® Goal: construct MPC protocol to compute F([k],[m]) — ¢ and F~1([k],c) — [m].

18



Additive Secret Sharing

secret x € GF(2%):

® choose xq, x>, x3 at random s.t. x; + X + x3 = X
® set (x); = x; (for i € {1,2,3})
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Addition/Linear Operation
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* (x+y)i= X+ W DxFy) =)+ W) =x+y
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Addition (x) with constant b € GF(2¥)
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Additive Secret Sharing

secret x € GF(2X):

® choose xq, x>, x3 at random s.t. x; + X + x3 = X
® set (x);, = x; (for i € {1,2,3})

Addition/Linear Operation

Addition of secret shared values (x), (y)

* (x+y)i= X+ W DxFy) =)+ W) =x+y
Multiplication (x) by constant a € GF(2*)
* (a-x);=a-(x); d{ax)=a- (L)) =a-x

Addition (x) with constant b € GF(2¥)
o (x+b)y;=(x);+b
® (x+b);, = (x),; for i € {2,3}
> (x4 b), = (X)) + b= x + b

19



Replicated Secret Sharing

Here: 3-party RSS (any two parties can reconstruct) — can be generalized to t-out-of-n

secret x € GF(2%):

20



Replicated Secret Sharing

Here: 3-party RSS (any two parties can reconstruct) — can be generalized to t-out-of-n
secret x € GF(2X):

® replicated sharing [x]; = (x1,x2), [x], = (x2,x3) and [x]; = (x3, x1).
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Replicated Secret Sharing

Here: 3-party RSS (any two parties can reconstruct) — can be generalized to t-out-of-n
secret x € GF(2X):

® replicated sharing [x]; = (x1,x2), [x], = (x2,x3) and [x]; = (x3, x1).

Linear operation L: [L(x)]; = (L({x);), L({x);;1)) — no communication

Squaring/other GF(2)-linear operations: also linear

20



Muiltiplication [x] - [y]
Given (0) from preprocessing

©® Local multiplication (xy); = x;yi + (x; + Xi+1)(¥i + yi+1) — obtain additive sharing of xy

21



Muiltiplication [x] - [y]

Given (0) from preprocessing
©® Local multiplication (xy); = x;yi + (x; + Xi+1)(¥i + yi+1) — obtain additive sharing of xy
® Send (xy); + (0); to P;_1, set [xy]; = ({xy); +(0);, (xy); 1 + (0); 1)

21



Structure of a SPN Block Cipher

SPN = Substitution-Permutation Network

[ [ [l L1
Substitution Layer

Permutation Layer repeat

|
]

Constant/Key Layer
1L 1L Il Il

22



Structure of a SPN Block Cipher

SPN = Substitution-Permutation Network

[ [ [l L1
Substitution Layer

1 o “algoithm’ structure

Permutation Layer L .
Y repeat ® substitution: non-linear

|||| |||| |||| |||| ® permutation, constant/key layer: linear
Constant/Key Layer

22



The Substitution Layer

Substitution Layer

23
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The Substitution Layer

Substitution Layer

A couple of approaches:

represent S
@ as Boolean circuit
@® as (uni-variate) polynomial

© as oblivious table lookup

S is a very non-linear s-bit to s-bit function
(here: 4-bit to 4-bit)

How to represent it with secret-independent
control flow?

similar approaches in literature for
constant-time / software side-channel
protection for block ciphers!

23



Useful/MPC-friendly Properties

What properties should the approach have?

® Low multiplicative complexity:

® Jow total number of multiplications/AND gates
® R X ns X mults
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Useful/MPC-friendly Properties

What properties should the approach have?

® Low multiplicative complexity:

® Jow total number of multiplications/AND gates
® R X ns X mults

® | ow multiplicative depth:

® round-based structure: R X roundss in total

24



AES as Example

25



Prelude: Galois Fields

We write GF(2¥) = F5[X]/F(X)

® f(X) irreducible polynomial of degree k: FIX)=X*+X+1
® element x € GF(2): polynomial of degree < k: X2+ X+1
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Prelude: Galois Fields

We write GF(2¥) = F5[X]/F(X)

® F(X) irreducible polynomial of degree k: FX)=X*+X+1
® element x € GF(2): polynomial of degree < k: X2+ X+1
Addition

coefficient-wise addition in F»

(XP+1)+ (XP+X+1) =X+ X+ X

26



Multiplication

polynomial multiplication modulo F(X)
schoolbook division: (X3 +1)- (X2 +X +1)=(X>+ X*+ X3+ X2+ X +1) mod F(X)

27



Multiplication
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X5 4+X* X3 +X? 44X 41 /(X X+1)=X+1
—X5 -X? -X
X+ +X3 +1
—X* -X -1
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Multiplication

polynomial multiplication modulo F(X)
schoolbook division: (X3 +1)- (X2 +X +1)=(X>+ X*+ X3+ X2+ X +1) mod F(X)

X5 Xt X3 4X? 44X 41 /(XA EX+D)=X+1

—X5 X2 —X
X4 X3 +1
e 5

X3 +X

- (X34+1)- (X2+ X +1) mod F(X) = X3+ X
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Multiplication

polynomial multiplication modulo F(X)
schoolbook division: (X3 +1)- (X2 +X +1)=(X>+ X*+ X3+ X2+ X +1) mod F(X)

X5 Xt X3 4X? 44X 41 /(XA EX+D)=X+1

—X5 X2 —X
X4 X3 +1
e 5

X3 +X

- (X34+1)- (X2+ X +1) mod F(X) = X3+ X

We write binary encoding: 13 = 23 22 +20 = (X3 + X2 + 1)

27



The AES

AES = Advanced Encryption Standard

Rijndael block cipher standardized by NIST 2001
block size: 128-bit

® key sizes: 128-bit, 192-bit, 256-bit

Block cipher composed of 10 rounds (AES-128)
defined over GF(28) = Fo[X]/X® + X* + X3 + X + 1.

28



® 128-bit Input: boby ... bio7

® group by 8: (bobi...b7) (bs...) ...
————

S0 s1

(...

bi27)

S15
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® 128-bit Input: boby ... bio7

® group by 8: (boby...b7) (bs...) ... (...
————

50 S1
® arrange column-first in 4 X 4 matrix

state =

bi27)
s15
S0 S4
S1 S5
S S6
S3 S7

S8

S10
S11

S12
S13
S14

S15
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® 128-bit Input: boby ... bio7

® group by 8: (boby...b7) (bs...) ... (...
————

S1

50
® arrange column-first in 4 X 4 matrix

® Key Schedule takes 128-bit key: produces 11 round keys

rk(()o)
rk (10)
rk(zo)
rk(30)

rkgo) rk go)
rk go) rk go)
rkgo) rk (1%)
rk (70) rk (ﬁ)

state =

rk (1%)
rk (1%)
rk (13)
rk (1%)

RKo

bi27)
s15
S0 S4
S1 S5
S S6
S3 S7

S8
So
S10
S11

S12
S13
S14

S15

rkélo) rkglo) rkglo) rk%o)

rk(llo) rkglo) rkglo) rk%o)

rkglo) rkélo) rk(lto) rkgio)

rkglo) rk(710) rkgllo) rk%o)
RK 1o

29



AES Round Function

@ SubBytes: S-box(s;) = f(s; 1)
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AES Round Function

@ SubBytes: S-box(s;) = f(s; ')

So  S4 S8 S12 S0 S4 Ss S12
. S1 S5 S9  S13 S5 So  S13  S1
® ShiftRows: —
S2 S S0 Su4 510 S14 S S6
S3  S7 S11 S15 S15 S3 ST S1

30



AES Round Function

@ SubBytes: S-box(s;) = f(s; ')

So S4 S8 S12 So S4 Sg  S12
. S1 S5 S9  S13 S5 So  S13  S1
® ShiftRows: —

S2 S S0 Si14 S10 S14 S S6
S3  S7 S11 S15 S15 S3 ST S1
02 03 01 01 S0 S4 Sg  S12
. 01 02 03 01 S1 S5 So 513

©® MixColumns: .
01 01 02 03 S S¢S0 S
03 01 01 02 S3 S7 S11 S15

30



AES Round Function

@ SubBytes: S-box(s;) = f(s; ')

So S4 S8 S12 So S4 Sg  S12
. S1 S5 S9  S13 S5 So  S13  S1
® ShiftRows: —

S2 S S0 Si14 S10 S14 S S6
S3  S7 S11 S15 S15 S3 ST S1
02 03 01 01 S0 S4 Sg  S12
. 01 02 03 01 S1 S5 So 513

©® MixColumns: .
01 01 02 03 S S¢S0 S
03 01 01 02 S3 S7 S11 S15

O AddRoundKey: state + RK,

30



AES S-box as Boolean Circuit

due to Boyar and Peralta [BP10]: 32 AND gates, 83 XOR gates
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AES S-box as Boolean Circuit

due to Boyar and

Peralta [BP10]: 32 AND gates, 83 XOR gates

Y14 = 23+ X5

Y13 = To + Te

Y9 = To + X3

ys = o+ x5 to = a1+ w2 y1 =to+ a7
Ya =y1+x3 Y12 = Y13 + Y14 Y2 =y + Xo
Ys =y1+Te Ys =Ys+ys t1 =24+ Y12
Yis =t1 +as Y20 = t1 + a1 Y6 = Y15 + 7
Y10 = Y15 + to Y11 = Y20 + Yo Y7 =x7 +yu
Y17 = Y10 + yn Y19 = Y10 + Y8 y16 = to + Y11
Y21 = Y13 + Y16 Y18 = To + Y16

tae = 215 + 216 tar = z10 + 211 tas = 25 + 213

tag = 29 + z10 tso = 22 + 212 ts1 =22+ 25

ts2 = 27 + 28 ts3 = 20 + 23 tsa = 26 + 27

tss = z16 + 217 tse = z12 + tas ts7r = tso + ts3

tss = 24 + lae tso = 23 + tss teo = tac + ts7

te1 = z14 + ts7 te2 = ts2 + tss te3 = tag + tss

tea = z4 + lso tes = te1 + te2 tee = 21 + tes

S0 = tso + te3 s6 = tse XNOR te2 s7 = tag XNOR teo
ter = tea + tos s3 = ts3 + les sS4 = ts1+les

S5 = tar +tes s1 = tea XNOR s3 s2 = ts5 XNOR te7

ta = Yyi2 X Y15

ts = y4 X 27
ts =ys X Y1
tin = tio +tr
t1a = t13 +t12
ti7 =tq+tis

tao = t11 + i
t2z = tig +y2

tas = ta1 +t2
tog = tas X lor
t31 = tao +t26
t3q = taz + 33
tar = t36 + 134
tao = t25 +t39

ta1 = tao +tar
taa = t33 4 tar
z1 = 1t371 X Yo
24 =tao X 1
27 = tas X Y17
z10 = t37 X Y3
213 = ta0 X Ys
216 = ta5 X Y14

t3 =Yz Xys
te =t5+t2
to =ts+ 17

ti2 = Yo X Y11
t15 = ys X Y10
tis = te + t16

t21 = t17r + Y20
t24 = t20 + Y18

tog = t21 X t23
tag = tag 4122
t32 = t31 X t30
t3s = tar + 133
t3g = tor +1t36

tag = t29 +1t33
tas = taz +ta1
29 =1t33 X T7
25 = t29 X Y7
zg = ta1 X Yo
z11 = t33 X Y4
214 = t29 X Y2
zi7 =ta1 X Y8

ty =t3+12
tr = yi3 X Y16
tio = Y2 X yr
t13 = Y14 X Y17
tig = t1s +t12
tig = to +t14
taz = t1s + Y19

tar = tag +t26
tso = t2z +t24
t3z = t32 +tos
tzg = t24 X t35
tag = tag X t3g

taz = t2g9 + tao

20 = taa X Y15
23 = ta3 X Y16
26 = taz X y11

29 = tas X Y12
212 = taz X Y13
215 = taz X Yo

31}



— in circuit form: https://nigelsmart.github.io/MPC-Circuits/

Cost: 32 GF(2) multiplications in 6 rounds

32
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AES S-box as Polynomial

Goal: find P(Z) s.t.

P(0) = £(0)
P(1) = f(1)
P(2) =f(27)

P(255) = (255 ")
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AES S-box as Polynomial

Goal: find P(Z) s.t.

P(0) = £(0)
P(1) = (1)
P(2) = f(27")

P(255) = (255 ")

Approach 1: due to [DKLMS12]

P(z) = 0x63 + 0x8Fz'%" + 0xB52'! 4 2223 4+ 0xF4z°% + 0x252%7
+ 0xF9z%°! + 0x092%%® + 0x052%°*
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AES S-box as Polynomial

Goal: find P(Z) s.t.

P(0) = £(0)
P(1) = £(1)
P(2) = (27

P(255) = (255 ")

Approach 1: due to [DKLMS12]

P(z) = 0x63 + 0x8Fz'%" + 0xB52'! 4 2223 4+ 0xF4z°% + 0x252%7
+ 0xF9z%°! + 0x092%%® + 0x052%°*

Cost: shortest addition chain for the set {127,191, 223,239, 247,251, 253, 254}

® 18 secure multiplications in GF(28) in 12 rounds 33



Approach 2: Using BitDecomposition

BitDecomposition: [b; X" + -+ + by X + bo] — [b7], - - -, [b1], [bo]
— computing z? € GF(28) is bit-linear!
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® Observation: f(z~1) = f(z?°*) (since 0 is mapped to 0)
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Approach 2: Using BitDecomposition
BitDecomposition: [b; X" + -+ + by X + bo] — [b7], - - -, [b1], [bo]
— computing z? € GF(28) is bit-linear!

® Observation: f(z~1) = f(z?°*) (since 0 is mapped to 0)

® write z2°* as
Q=27 (1 mult.)
Q °= (23)4 e (23)4 7 (2 mult.)
© 25 — (7)1 . 1 (1 mult.)
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Approach 2: Using BitDecomposition
BitDecomposition: [b; X" + -+ + by X + bo] — [b7], - - -, [b1], [bo]
— computing z? € GF(28) is bit-linear!

® Observation: f(z~1) = f(z?°*) (since 0 is mapped to 0)

® write z2°* as
Q=27 (1 mult.)
Q °= (23)4 e (23)4 7 (2 mult.)
© 25 — (7)1 . 1 (1 mult.)

Cost: 4 GF(28) multiplications in 3 rounds

cf. [DK10], [CHIKP18§]
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Approach 3: Using Tower Fields [MPSSTT25]
Isomorphism ¢ : GF(28) — GF(2*)?
(1] (b(Z) = (aha a@)
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Approach 3: Using Tower Fields [MPSSTT25]

Isomorphism ¢ : GF(28) — GF(2*)?
(1) (b(Z) = (aha a@)
(2) v:ea%+ah-ag+a§

©vl=12.,4.8

(1 mult.)
(2 mult.)

35



Approach 3: Using Tower Fields [MPSSTT25]

Isomorphism ¢ : GF(28) — GF(2*)?
0 ¢(2) = (an, )
(2} v:ea%+ah-ag+a§
© v-l—12. 4.8

(4] z7l= ¢_1(ah . V_l7 (ah 4= ag) . V_l)

(1 mult.)
(2 mult.)
(2 mult.)
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Approach 3: Using Tower Fields [MPSSTT25]
Isomorphism ¢ : GF(28) — GF(2*)?
© ¢(2) = (an, ar)
@v=ealtaat+a (1 mult.)
©vi=v2.v" 8 (2 mult.)
0z '=¢Yap-vi(an+ta) vl (2mult)
Cost: 5 GF(2*) multiplications in 4 rounds

35]



Oblivious Table Lookup Protocol

Goal: compute table lookup LUT [T[x]] from table T and [x]
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Oblivious Table Lookup Protocol

Goal: compute table lookup LUT [T[x]] from table T and [x]

given random one-hot vector correlation from preprocessing [r], [e("]

[[e(r)]] = ([[O]]v 000g [[Oﬂv [[1]]7 [[Oﬂv 0 ¢ )
~——

r
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Oblivious Table Lookup Protocol

Goal: compute table lookup LUT [T[x]] from table T and [x]

given random one-hot vector correlation from preprocessing [r], [e("]

[[e(r)]] = ([[O]]v 000g [[Oﬂv [[1]]7 [[Oﬂv 0 ¢ )
~——

r

@ Reveal value c = r + x
@® Local computation [T[x]] =>_, T[c—i]- [[el-(r)ﬂ

36



AES S-box as Oblivious Table Lookup

AES S-box table: 256 elements

— costly preprocessing of length-256 random one-hot vector (= 247 bit-multiplications)
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AES S-box table: 256 elements
— costly preprocessing of length-256 random one-hot vector (= 247 bit-multiplications)
MAESTRO (3-party, honest majority) [MPSSTT25]

using replicated secret sharing reduce cost with a trick
Better preprocessing:
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AES S-box as Oblivious Table Lookup

AES S-box table: 256 elements
— costly preprocessing of length-256 random one-hot vector (= 247 bit-multiplications)
MAESTRO (3-party, honest majority) [MPSSTT25]

using replicated secret sharing reduce cost with a trick
Better preprocessing:

@ obtain 2 length-16 random one-hot vectors: [u], [e(*)] and [v], [e")]
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AES S-box as Oblivious Table Lookup

AES S-box table: 256 elements
— costly preprocessing of length-256 random one-hot vector (= 247 bit-multiplications)
MAESTRO (3-party, honest majority) [MPSSTT25]

using replicated secret sharing reduce cost with a trick
Better preprocessing:
@ obtain 2 length-16 random one-hot vectors: [u], [e(*)] and [v], [e")]

@ local tensor product (e(")) « [e(")] @ [e()]
where r = u||lv
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AES S-box as Oblivious Table Lookup

AES S-box table: 256 elements
— costly preprocessing of length-256 random one-hot vector (= 247 bit-multiplications)
MAESTRO (3-party, honest majority) [MPSSTT25]

using replicated secret sharing reduce cost with a trick

Better preprocessing:
@ obtain 2 length-16 random one-hot vectors: [u], [e(*)] and [v], [e")]
@ local tensor product (e(")) « [e(")] @ [e()]

where r = u||lv

© output ([1], (e!))
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AES S-box as Oblivious Table Lookup

AES S-box table: 256 elements
— costly preprocessing of length-256 random one-hot vector (= 247 bit-multiplications)
MAESTRO (3-party, honest majority) [MPSSTT25]

using replicated secret sharing reduce cost with a trick
Better preprocessing:
@ obtain 2 length-16 random one-hot vectors: [u], [e(*)] and [v], [e")]
@ local tensor product (e(")) « [e(")] @ [e()]
where r = u||lv
o output ([1], ()
— cost: 22 GF(2) multiplications in 2 rounds (preprocessing)
— cost: 16 bits in 1 round (online)
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Performance

— measure throughput in AES blocks/s

Throughput (blocks/s)
Protocol Online Total Online Total Online Total

Polynomial Approach 2 568 504 568 504 124 290 124 290 13392 13 392
Polynomial Approach 3 729 822 729 822 179369 179 369 18 497 18 497
Oblv. Table Lookup 641 302 108 114 148 917 39 156 16 574 5 216

10 Gbit/s 1 Gbit/s 100 MBit/s
< 1ms RTT < 1ms RTT 30ms RTT

Network

semi-honest security, 16-core 128GB RAM
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— measure throughput in AES blocks/s

Throughput (blocks/s)

Protocol Online Total Online Total  Online  Total
Polynomial Approach 2* 152 127 10 100 33 646 4 490 4707 1039
Polynomial Approach 3 48 924 48 924 18 829 18 829 5396 5 396
Oblv. Table Lookup 32508 25409 13 547 10 560 3370 2345
Nemork 10 Gbit/s 1 Gbit/s 100 MBit/s
ewer < 1ms RTT < 1ms RTT 30ms RTT

* with [FLNW17]
active security, 16-core 128GB RAM

39



Thank you!
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