
An Introduction to Distributed Symmetric Encryption

Erik Pohle

erik.pohle@esat.kuleuven.be

April 1st, 2025

COSIC, KU Leuven, Belgium



Content

• Setting

• Applications

• DiSE

• MPC-based Distributed Encryption

• for AES

2



Symmetric-key Encryption

• Alice and Bob share a secret key k

• Alice computes c ← Enc(k ,m)

• Alice sends c to Bob

• Bob computes m← Dec(k , c)

Security?

• The adversary does not know k

• Cannot learn anything about m given c

• IND-CPA, IND-CCA

Examples

AES-CBC, AES-GCM, ChaCha20-Poly1305, . . .

3



Symmetric-key Encryption

• Alice and Bob share a secret key k

• Alice computes c ← Enc(k ,m)

• Alice sends c to Bob

• Bob computes m← Dec(k , c)

Security?

• The adversary does not know k

• Cannot learn anything about m given c

• IND-CPA, IND-CCA

Examples

AES-CBC, AES-GCM, ChaCha20-Poly1305, . . .

3



Symmetric-key Encryption

• Alice and Bob share a secret key k

• Alice computes c ← Enc(k ,m)

• Alice sends c to Bob

• Bob computes m← Dec(k , c)

Security?

• The adversary does not know k

• Cannot learn anything about m given c

• IND-CPA, IND-CCA

Examples

AES-CBC, AES-GCM, ChaCha20-Poly1305, . . .

3



Setting: Distributed Encryption

• Goal: distribute Alice/Bob’s operations among P1, . . . ,Pn

• Why? no small group of parties should learn the secret key k (threshold from secret

sharing)

• Pi only knows JkKi

Protocol Π1

P1 knows m, JkK1
Pi knows JkKi , i ̸= 1

1 Parties run distributed encryption protocol

2 P1 outputs c

Protocol Π2

Pi knows JkKi , JmKi
1 Parties run distributed encryption protocol

2 Pi outputs c

4



Setting: Distributed Encryption

• Goal: distribute Alice/Bob’s operations among P1, . . . ,Pn

• Why? no small group of parties should learn the secret key k (threshold from secret

sharing)

• Pi only knows JkKi

Protocol Π1

P1 knows m, JkK1
Pi knows JkKi , i ̸= 1

1 Parties run distributed encryption protocol

2 P1 outputs c

Protocol Π2

Pi knows JkKi , JmKi
1 Parties run distributed encryption protocol

2 Pi outputs c

4



Setting: Distributed Encryption

• Goal: distribute Alice/Bob’s operations among P1, . . . ,Pn

• Why? no small group of parties should learn the secret key k (threshold from secret

sharing)

• Pi only knows JkKi

Protocol Π1

P1 knows m, JkK1
Pi knows JkKi , i ̸= 1

1 Parties run distributed encryption protocol

2 P1 outputs c

Protocol Π2

Pi knows JkKi , JmKi
1 Parties run distributed encryption protocol

2 Pi outputs c

4



Distributed Decryption

Protocol Π1

P1 knows c , JkK1
Pi knows JkKi , i ̸= 1

1 Parties run distributed decryption protocol

2 P1 outputs m

Protocol Π2

Pi knows JkKi , c

1 Parties run distributed decryption protocol

2 Pi outputs JmKi

Protocol Π1 = DiSE Π2 = MPC-based distributed

encryption/decryption

5



Distributed Decryption

Protocol Π1

P1 knows c , JkK1
Pi knows JkKi , i ̸= 1

1 Parties run distributed decryption protocol

2 P1 outputs m

Protocol Π2

Pi knows JkKi , c

1 Parties run distributed decryption protocol

2 Pi outputs JmKi

Protocol Π1 = DiSE Π2 = MPC-based distributed

encryption/decryption

5



Distributed Decryption

Protocol Π1

P1 knows c , JkK1
Pi knows JkKi , i ̸= 1

1 Parties run distributed decryption protocol

2 P1 outputs m

Protocol Π2

Pi knows JkKi , c

1 Parties run distributed decryption protocol

2 Pi outputs JmKi

Protocol Π1 = DiSE Π2 = MPC-based distributed

encryption/decryption

5



Desirable Properties

Correctness

c = Enc(k,m)

Privacy

• Corrupted Pj cannot learn anything about k

• (Π1) If P1 is honest, Pj cannot learn anything about m (except for its length)

• (Π2) Pj cannot learn anything about m (except for its length)

Authenticity

A corrupted party cannot forge a message

• A corrupted P1 cannot make honest parties output m′ given c ′

6



Desirable Properties

Correctness

c = Enc(k,m)

Privacy

• Corrupted Pj cannot learn anything about k

• (Π1) If P1 is honest, Pj cannot learn anything about m (except for its length)

• (Π2) Pj cannot learn anything about m (except for its length)

Authenticity

A corrupted party cannot forge a message

• A corrupted P1 cannot make honest parties output m′ given c ′

6



Desirable Properties

Correctness

c = Enc(k,m)

Privacy

• Corrupted Pj cannot learn anything about k

• (Π1) If P1 is honest, Pj cannot learn anything about m (except for its length)

• (Π2) Pj cannot learn anything about m (except for its length)

Authenticity

A corrupted party cannot forge a message

• A corrupted P1 cannot make honest parties output m′ given c ′

6



Desirable Properties

Correctness

c = Enc(k,m)

Privacy

• Corrupted Pj cannot learn anything about k

• (Π1) If P1 is honest, Pj cannot learn anything about m (except for its length)

• (Π2) Pj cannot learn anything about m (except for its length)

Authenticity

A corrupted party cannot forge a message

• A corrupted P1 cannot make honest parties output m′ given c ′

6



Applications

Protect Keys in Use: Encrypted Storage

Dist. Enc.

P1 P2

P3

JkK

JkK

JkK
untrusted storage

Dist. Dec.

P1 P2

P3

JkK

JkK

JkK

m c c m

→ secret key k is shared among P1,P2,P3

7



Oblivious PRFs

PRF

P1 P2

m k

c

→ private set intersection,

pattern matching

→ keyword search, secure

database joins

Distributed Encryption/Decryption

Processing

Deck(c)

S1
JkK

S2
JkK

Client

d
c = Enck (d)

JdK

→ transciphering, “encrypt to the future”

virtual hardware security module

CMAC(·)
HMAC(·)

P1 P2

P3

input output

→ protect cryptographic keys during use

→ decentralize Kerberos Key Distribution Center

→ distributed authentication/identification

systems

NIST threshold cryptography project:

https://csrc.nist.gov/projects/

threshold-cryptography

8

https://csrc.nist.gov/projects/threshold-cryptography
https://csrc.nist.gov/projects/threshold-cryptography


Oblivious PRFs

PRF

P1 P2

m k

c

→ private set intersection,

pattern matching

→ keyword search, secure

database joins

Distributed Encryption/Decryption

Processing

Deck(c)

S1
JkK

S2
JkK

Client

d
c = Enck (d)

JdK

→ transciphering, “encrypt to the future”

virtual hardware security module

CMAC(·)
HMAC(·)

P1 P2

P3

input output

→ protect cryptographic keys during use

→ decentralize Kerberos Key Distribution Center

→ distributed authentication/identification

systems

NIST threshold cryptography project:

https://csrc.nist.gov/projects/

threshold-cryptography

8

https://csrc.nist.gov/projects/threshold-cryptography
https://csrc.nist.gov/projects/threshold-cryptography


Oblivious PRFs

PRF

P1 P2

m k

c

→ private set intersection,

pattern matching

→ keyword search, secure

database joins

Distributed Encryption/Decryption

Processing

Deck(c)

S1
JkK

S2
JkK

Client

d
c = Enck (d)

JdK

→ transciphering, “encrypt to the future”

virtual hardware security module

CMAC(·)
HMAC(·)

P1 P2

P3

input output

→ protect cryptographic keys during use

→ decentralize Kerberos Key Distribution Center

→ distributed authentication/identification

systems

NIST threshold cryptography project:

https://csrc.nist.gov/projects/

threshold-cryptography

8

https://csrc.nist.gov/projects/threshold-cryptography
https://csrc.nist.gov/projects/threshold-cryptography


Distributed Symmetric-key

Encryption (DiSE)

9



Distributed Symmetric-key Encryption (DiSE) [AMMR18]

Paper by Visa Research in CCS’18 with a few follow-up works

Main Idea:

1 Initiating party P1 derives randomness α from m

2 All parties compute w ← DPRF(k , α), P1 obtains w

3 P1 encrypts m with w

4 P1 outputs c = (“Enc”(w ,m), α)

10



Distributed Pseudo-random Function (DPRF)

Syntax:

• Setup → JkK1, . . . , JkKn, p
• Eval(JkKi , x , p)→ z i

• Combine(z1, . . . , z s , p)→ z

Properties

Pseudo-random

Output z is indistinguishable from output of a

random function

Correctness

By sending z j′, corrupted parties cannot bias z

→ honest parties either output z or abort

11



Distributed Pseudo-random Function (DPRF)

Syntax:

• Setup → JkK1, . . . , JkKn, p
• Eval(JkKi , x , p)→ z i

• Combine(z1, . . . , z s , p)→ z

Properties

Pseudo-random

Output z is indistinguishable from output of a

random function

Correctness

By sending z j′, corrupted parties cannot bias z

→ honest parties either output z or abort

11



Commitment Scheme

Syntax:

• SetupCom → pCom

• Com(x , r , pCom)→ α

Properties

Hiding

Output α hides x (for random r)

Binding

The adversary cannot produce (x0, r0) ̸= (x1, r1)

where Com(x0, r0, pCom) = Com(x1, r1, pCom)

12



Commitment Scheme

Syntax:

• SetupCom → pCom

• Com(x , r , pCom)→ α

Properties

Hiding

Output α hides x (for random r)

Binding

The adversary cannot produce (x0, r0) ̸= (x1, r1)

where Com(x0, r0, pCom) = Com(x1, r1, pCom)

12



The Encryption Protocol

Setup: Run DPRF and commitment scheme setup;

Pi holds p, pCom, JkKi

Message m known to P1

P1 Pi , i ̸= 1

1 α ← Com(m, r , pCom) for a fresh

random r
α−−−−−−−−−−−→

2 z1 ← Eval(JkK1, 1∥α, p)
2 z i ← Eval(JkKi , 1∥α, p)

z i←−−−−−−−−−−−

3 w ← Combine(z1, . . . , z s , p)

4 e ← PRG(w)⊕ (m∥r)
5 output c = (e, α)

13



The Encryption Protocol

Setup: Run DPRF and commitment scheme setup;

Pi holds p, pCom, JkKi

Message m known to P1

P1 Pi , i ̸= 1

1 α ← Com(m, r , pCom) for a fresh

random r
α−−−−−−−−−−−→

2 z1 ← Eval(JkK1, 1∥α, p)
2 z i ← Eval(JkKi , 1∥α, p)

z i←−−−−−−−−−−−

3 w ← Combine(z1, . . . , z s , p)

4 e ← PRG(w)⊕ (m∥r)
5 output c = (e, α)

13



The Encryption Protocol

Setup: Run DPRF and commitment scheme setup;

Pi holds p, pCom, JkKi

Message m known to P1

P1 Pi , i ̸= 1

1 α ← Com(m, r , pCom) for a fresh

random r
α−−−−−−−−−−−→

2 z1 ← Eval(JkK1, 1∥α, p)
2 z i ← Eval(JkKi , 1∥α, p)

z i←−−−−−−−−−−−

3 w ← Combine(z1, . . . , z s , p)

4 e ← PRG(w)⊕ (m∥r)
5 output c = (e, α)

13



The Encryption Protocol

Setup: Run DPRF and commitment scheme setup;

Pi holds p, pCom, JkKi

Message m known to P1

P1 Pi , i ̸= 1

1 α ← Com(m, r , pCom) for a fresh

random r
α−−−−−−−−−−−→

2 z1 ← Eval(JkK1, 1∥α, p)
2 z i ← Eval(JkKi , 1∥α, p)

z i←−−−−−−−−−−−

3 w ← Combine(z1, . . . , z s , p)

4 e ← PRG(w)⊕ (m∥r)
5 output c = (e, α)

13



The Encryption Protocol

Setup: Run DPRF and commitment scheme setup;

Pi holds p, pCom, JkKi

Message m known to P1

P1 Pi , i ̸= 1

1 α ← Com(m, r , pCom) for a fresh

random r
α−−−−−−−−−−−→

2 z1 ← Eval(JkK1, 1∥α, p)
2 z i ← Eval(JkKi , 1∥α, p)

z i←−−−−−−−−−−−

3 w ← Combine(z1, . . . , z s , p)

4 e ← PRG(w)⊕ (m∥r)
5 output c = (e, α) 13



The Decryption Protocol

Setup: Run DPRF and commitment scheme setup;

Pi holds p, pCom, JkKi

Ciphertext c known to P1

P1 Pi , i ̸= 1

1 (α, e) = c
α−−−−−−−−−−−→

2 z1 ← Eval(JkK1, 1∥α, p) 2 z i ← Eval(JkKi , 1∥α, p)
z i←−−−−−−−−−−−

3 w ← Combine(z1, . . . , z s , p)

4 m′∥r ′ ← PRG(w)⊕ e

5 if α ̸= Com(m′, r ′, pCom) abort

5 else: output m = m′

14



Instantiating DPRF

for a threshold t-out-of-n sharing

PRF-based (Naor, Pinkas, Reingold)

Let F be a PRF.

• choose k1, . . . , kd at random

• key share JkKi is replicated secret sharing using k1, . . . , kd as additive shares of the secret

• (after reconstruction) computes F (k1, x)⊕ · · · ⊕ F (kd , x)

DDH-based

Let G be a multiplicative cyclic group of prime order p where DDH assumption holds.

H(·) hashes to G

• JkKi is a Shamir sharing of a random s ←$ Zp

• Eval(JkKi , x , p) = H(x)JkKi

• (after reconstruction) computes H(x)s .

→ for n ≤ 24 PRF-based DPRF is still faster despite exponential overhead

15



Instantiating DPRF

for a threshold t-out-of-n sharing

PRF-based (Naor, Pinkas, Reingold)

Let F be a PRF.

• choose k1, . . . , kd at random

• key share JkKi is replicated secret sharing using k1, . . . , kd as additive shares of the secret

• (after reconstruction) computes F (k1, x)⊕ · · · ⊕ F (kd , x)

DDH-based

Let G be a multiplicative cyclic group of prime order p where DDH assumption holds.

H(·) hashes to G

• JkKi is a Shamir sharing of a random s ←$ Zp

• Eval(JkKi , x , p) = H(x)JkKi

• (after reconstruction) computes H(x)s .

→ for n ≤ 24 PRF-based DPRF is still faster despite exponential overhead

15



Instantiating DPRF

for a threshold t-out-of-n sharing

PRF-based (Naor, Pinkas, Reingold)

Let F be a PRF.

• choose k1, . . . , kd at random

• key share JkKi is replicated secret sharing using k1, . . . , kd as additive shares of the secret

• (after reconstruction) computes F (k1, x)⊕ · · · ⊕ F (kd , x)

DDH-based

Let G be a multiplicative cyclic group of prime order p where DDH assumption holds.

H(·) hashes to G

• JkKi is a Shamir sharing of a random s ←$ Zp

• Eval(JkKi , x , p) = H(x)JkKi

• (after reconstruction) computes H(x)s .

→ for n ≤ 24 PRF-based DPRF is still faster despite exponential overhead
15



Performance

Throughput (enc/s)

n t PRF-based DDH-based

4 2 1 113 090 555

6 2 1 095 770 556

18 6 45 434 297

24 16 445 100

numbers from Fig.9 [AMMR18]

16



MPC-based Distributed

Symmetric-key Encryption

17



Another Approach: Using MPC

• focus on MPC evaluation of a block cipher

• use a block cipher in a mode of operation to encrypt (see tomorrow’s talks)

Block Cipher

A block cipher F (k,m)→ c maps a b-bit input m under a λ-bit key to a b-bit output.

Security?

A secure block cipher behaves like a (independent) pseudo-random permutation for each key

• Goal: construct MPC protocol to compute F (JkK, JmK)→ c and F−1(JkK, c)→ JmK.

18



Another Approach: Using MPC

• focus on MPC evaluation of a block cipher

• use a block cipher in a mode of operation to encrypt (see tomorrow’s talks)

Block Cipher

A block cipher F (k ,m)→ c maps a b-bit input m under a λ-bit key to a b-bit output.

Security?

A secure block cipher behaves like a (independent) pseudo-random permutation for each key

• Goal: construct MPC protocol to compute F (JkK, JmK)→ c and F−1(JkK, c)→ JmK.

18



Another Approach: Using MPC

• focus on MPC evaluation of a block cipher

• use a block cipher in a mode of operation to encrypt (see tomorrow’s talks)

Block Cipher

A block cipher F (k ,m)→ c maps a b-bit input m under a λ-bit key to a b-bit output.

Security?

A secure block cipher behaves like a (independent) pseudo-random permutation for each key

• Goal: construct MPC protocol to compute F (JkK, JmK)→ c and F−1(JkK, c)→ JmK.

18



Another Approach: Using MPC

• focus on MPC evaluation of a block cipher

• use a block cipher in a mode of operation to encrypt (see tomorrow’s talks)

Block Cipher

A block cipher F (k ,m)→ c maps a b-bit input m under a λ-bit key to a b-bit output.

Security?

A secure block cipher behaves like a (independent) pseudo-random permutation for each key

• Goal: construct MPC protocol to compute F (JkK, JmK)→ c and F−1(JkK, c)→ JmK.

18



Additive Secret Sharing

secret x ∈ GF(2k):

• choose x1, x2, x3 at random s.t. x1 + x2 + x3 = x
• set ⟨x⟩i = xi (for i ∈ {1, 2, 3})

Addition/Linear Operation

Addition of secret shared values ⟨x⟩, ⟨y⟩
• ⟨x + y⟩i = ⟨x⟩i + ⟨y⟩i

∑
⟨x + y⟩i = (

∑
⟨x⟩i ) + (

∑
⟨y⟩i ) = x + y

Multiplication ⟨x⟩ by constant a ∈ GF(2k)

• ⟨a · x⟩i = a · ⟨x⟩i
∑
⟨a · x⟩i = a · (

∑
⟨x⟩i ) = a · x

Addition ⟨x⟩ with constant b ∈ GF(2k)

• ⟨x + b⟩1 = ⟨x⟩1 + b

• ⟨x + b⟩i = ⟨x⟩i for i ∈ {2, 3} ∑
⟨x + b⟩i = (

∑
⟨x⟩) + b = x + b

19



Additive Secret Sharing

secret x ∈ GF(2k):

• choose x1, x2, x3 at random s.t. x1 + x2 + x3 = x
• set ⟨x⟩i = xi (for i ∈ {1, 2, 3})

Addition/Linear Operation

Addition of secret shared values ⟨x⟩, ⟨y⟩
• ⟨x + y⟩i = ⟨x⟩i + ⟨y⟩i

∑
⟨x + y⟩i = (

∑
⟨x⟩i ) + (

∑
⟨y⟩i ) = x + y

Multiplication ⟨x⟩ by constant a ∈ GF(2k)

• ⟨a · x⟩i = a · ⟨x⟩i
∑
⟨a · x⟩i = a · (

∑
⟨x⟩i ) = a · x

Addition ⟨x⟩ with constant b ∈ GF(2k)

• ⟨x + b⟩1 = ⟨x⟩1 + b

• ⟨x + b⟩i = ⟨x⟩i for i ∈ {2, 3} ∑
⟨x + b⟩i = (

∑
⟨x⟩) + b = x + b

19



Additive Secret Sharing

secret x ∈ GF(2k):

• choose x1, x2, x3 at random s.t. x1 + x2 + x3 = x
• set ⟨x⟩i = xi (for i ∈ {1, 2, 3})

Addition/Linear Operation

Addition of secret shared values ⟨x⟩, ⟨y⟩
• ⟨x + y⟩i = ⟨x⟩i + ⟨y⟩i

∑
⟨x + y⟩i = (

∑
⟨x⟩i ) + (

∑
⟨y⟩i ) = x + y

Multiplication ⟨x⟩ by constant a ∈ GF(2k)

• ⟨a · x⟩i = a · ⟨x⟩i
∑
⟨a · x⟩i = a · (

∑
⟨x⟩i ) = a · x

Addition ⟨x⟩ with constant b ∈ GF(2k)

• ⟨x + b⟩1 = ⟨x⟩1 + b

• ⟨x + b⟩i = ⟨x⟩i for i ∈ {2, 3} ∑
⟨x + b⟩i = (

∑
⟨x⟩) + b = x + b

19



Additive Secret Sharing

secret x ∈ GF(2k):

• choose x1, x2, x3 at random s.t. x1 + x2 + x3 = x
• set ⟨x⟩i = xi (for i ∈ {1, 2, 3})

Addition/Linear Operation

Addition of secret shared values ⟨x⟩, ⟨y⟩
• ⟨x + y⟩i = ⟨x⟩i + ⟨y⟩i

∑
⟨x + y⟩i = (

∑
⟨x⟩i ) + (

∑
⟨y⟩i ) = x + y

Multiplication ⟨x⟩ by constant a ∈ GF(2k)

• ⟨a · x⟩i = a · ⟨x⟩i

∑
⟨a · x⟩i = a · (

∑
⟨x⟩i ) = a · x

Addition ⟨x⟩ with constant b ∈ GF(2k)

• ⟨x + b⟩1 = ⟨x⟩1 + b

• ⟨x + b⟩i = ⟨x⟩i for i ∈ {2, 3} ∑
⟨x + b⟩i = (

∑
⟨x⟩) + b = x + b

19



Additive Secret Sharing

secret x ∈ GF(2k):

• choose x1, x2, x3 at random s.t. x1 + x2 + x3 = x
• set ⟨x⟩i = xi (for i ∈ {1, 2, 3})

Addition/Linear Operation

Addition of secret shared values ⟨x⟩, ⟨y⟩
• ⟨x + y⟩i = ⟨x⟩i + ⟨y⟩i

∑
⟨x + y⟩i = (

∑
⟨x⟩i ) + (

∑
⟨y⟩i ) = x + y

Multiplication ⟨x⟩ by constant a ∈ GF(2k)

• ⟨a · x⟩i = a · ⟨x⟩i
∑
⟨a · x⟩i = a · (

∑
⟨x⟩i ) = a · x

Addition ⟨x⟩ with constant b ∈ GF(2k)

• ⟨x + b⟩1 = ⟨x⟩1 + b

• ⟨x + b⟩i = ⟨x⟩i for i ∈ {2, 3} ∑
⟨x + b⟩i = (

∑
⟨x⟩) + b = x + b

19



Additive Secret Sharing

secret x ∈ GF(2k):

• choose x1, x2, x3 at random s.t. x1 + x2 + x3 = x
• set ⟨x⟩i = xi (for i ∈ {1, 2, 3})

Addition/Linear Operation

Addition of secret shared values ⟨x⟩, ⟨y⟩
• ⟨x + y⟩i = ⟨x⟩i + ⟨y⟩i

∑
⟨x + y⟩i = (

∑
⟨x⟩i ) + (

∑
⟨y⟩i ) = x + y

Multiplication ⟨x⟩ by constant a ∈ GF(2k)

• ⟨a · x⟩i = a · ⟨x⟩i
∑
⟨a · x⟩i = a · (

∑
⟨x⟩i ) = a · x

Addition ⟨x⟩ with constant b ∈ GF(2k)

• ⟨x + b⟩1 = ⟨x⟩1 + b

• ⟨x + b⟩i = ⟨x⟩i for i ∈ {2, 3}

∑
⟨x + b⟩i = (

∑
⟨x⟩) + b = x + b

19



Additive Secret Sharing

secret x ∈ GF(2k):

• choose x1, x2, x3 at random s.t. x1 + x2 + x3 = x
• set ⟨x⟩i = xi (for i ∈ {1, 2, 3})

Addition/Linear Operation

Addition of secret shared values ⟨x⟩, ⟨y⟩
• ⟨x + y⟩i = ⟨x⟩i + ⟨y⟩i

∑
⟨x + y⟩i = (

∑
⟨x⟩i ) + (

∑
⟨y⟩i ) = x + y

Multiplication ⟨x⟩ by constant a ∈ GF(2k)

• ⟨a · x⟩i = a · ⟨x⟩i
∑
⟨a · x⟩i = a · (

∑
⟨x⟩i ) = a · x

Addition ⟨x⟩ with constant b ∈ GF(2k)

• ⟨x + b⟩1 = ⟨x⟩1 + b

• ⟨x + b⟩i = ⟨x⟩i for i ∈ {2, 3} ∑
⟨x + b⟩i = (

∑
⟨x⟩) + b = x + b

19



Replicated Secret Sharing

Here: 3-party RSS (any two parties can reconstruct) → can be generalized to t-out-of-n

secret x ∈ GF(2k):

• replicated sharing JxK1 = (x1, x2), JxK2 = (x2, x3) and JxK3 = (x3, x1).

Linear operation L: JL(x)Ki = (L(⟨x⟩i ), L(⟨x⟩i+1)) → no communication

Squaring/other GF(2)-linear operations: also linear

20



Replicated Secret Sharing

Here: 3-party RSS (any two parties can reconstruct) → can be generalized to t-out-of-n

secret x ∈ GF(2k):

• replicated sharing JxK1 = (x1, x2), JxK2 = (x2, x3) and JxK3 = (x3, x1).

Linear operation L: JL(x)Ki = (L(⟨x⟩i ), L(⟨x⟩i+1)) → no communication

Squaring/other GF(2)-linear operations: also linear

20



Replicated Secret Sharing

Here: 3-party RSS (any two parties can reconstruct) → can be generalized to t-out-of-n

secret x ∈ GF(2k):

• replicated sharing JxK1 = (x1, x2), JxK2 = (x2, x3) and JxK3 = (x3, x1).

Linear operation L: JL(x)Ki = (L(⟨x⟩i ), L(⟨x⟩i+1)) → no communication

Squaring/other GF(2)-linear operations: also linear

20



Multiplication JxK · JyK

Given ⟨0⟩ from preprocessing

1 Local multiplication ⟨xy⟩i = xiyi + (xi + xi+1)(yi + yi+1) → obtain additive sharing of xy

2 Send ⟨xy⟩i + ⟨0⟩i to Pi−1, set JxyKi = (⟨xy⟩i + ⟨0⟩i , ⟨xy⟩i+1 + ⟨0⟩i+1)

21



Multiplication JxK · JyK

Given ⟨0⟩ from preprocessing

1 Local multiplication ⟨xy⟩i = xiyi + (xi + xi+1)(yi + yi+1) → obtain additive sharing of xy

2 Send ⟨xy⟩i + ⟨0⟩i to Pi−1, set JxyKi = (⟨xy⟩i + ⟨0⟩i , ⟨xy⟩i+1 + ⟨0⟩i+1)

21



Structure of a SPN Block Cipher

SPN = Substitution-Permutation Network

Substitution Layer

Permutation Layer

Constant/Key Layer

repeat

• “algorithm” structure

• substitution: non-linear

• permutation, constant/key layer: linear

22



Structure of a SPN Block Cipher

SPN = Substitution-Permutation Network

Substitution Layer

Permutation Layer

Constant/Key Layer

repeat

• “algorithm” structure

• substitution: non-linear

• permutation, constant/key layer: linear

22



The Substitution Layer

S S S S

Substitution Layer

S is a very non-linear s-bit to s-bit function

(here: 4-bit to 4-bit)

How to represent it with secret-independent

control flow?

A couple of approaches:

represent S

1 as Boolean circuit

2 as (uni-variate) polynomial

3 as oblivious table lookup

similar approaches in literature for

constant-time / software side-channel

protection for block ciphers!

23



The Substitution Layer

S S S S

Substitution Layer

S is a very non-linear s-bit to s-bit function

(here: 4-bit to 4-bit)

How to represent it with secret-independent

control flow?

A couple of approaches:

represent S

1 as Boolean circuit

2 as (uni-variate) polynomial

3 as oblivious table lookup

similar approaches in literature for

constant-time / software side-channel

protection for block ciphers!

23



The Substitution Layer

S S S S

Substitution Layer

S is a very non-linear s-bit to s-bit function

(here: 4-bit to 4-bit)

How to represent it with secret-independent

control flow?

A couple of approaches:

represent S

1 as Boolean circuit

2 as (uni-variate) polynomial

3 as oblivious table lookup

similar approaches in literature for

constant-time / software side-channel

protection for block ciphers!

23



The Substitution Layer

S S S S

Substitution Layer

S is a very non-linear s-bit to s-bit function

(here: 4-bit to 4-bit)

How to represent it with secret-independent

control flow?

A couple of approaches:

represent S

1 as Boolean circuit

2 as (uni-variate) polynomial

3 as oblivious table lookup

similar approaches in literature for

constant-time / software side-channel

protection for block ciphers!

23



The Substitution Layer

S S S S

Substitution Layer

S is a very non-linear s-bit to s-bit function

(here: 4-bit to 4-bit)

How to represent it with secret-independent

control flow?

A couple of approaches:

represent S

1 as Boolean circuit

2 as (uni-variate) polynomial

3 as oblivious table lookup

similar approaches in literature for

constant-time / software side-channel

protection for block ciphers!

23



Useful/MPC-friendly Properties

What properties should the approach have?

• Low multiplicative complexity:

• low total number of multiplications/AND gates
• R × nS ×multS

• Low multiplicative depth:

• round-based structure: R × roundsS in total

24



Useful/MPC-friendly Properties

What properties should the approach have?

• Low multiplicative complexity:

• low total number of multiplications/AND gates
• R × nS ×multS

• Low multiplicative depth:

• round-based structure: R × roundsS in total

24



AES as Example

25



Prelude: Galois Fields

We write GF(2k) = F2[X ]/F (X )

• F (X ) irreducible polynomial of degree k : F (X ) = X 4 + X + 1

• element x ∈ GF(2k): polynomial of degree < k : X 2 + X + 1

Addition

coefficient-wise addition in F2(
X 3 + 1

)
+

(
X 2 + X + 1

)
= X 3 + X 2 + X

26



Prelude: Galois Fields

We write GF(2k) = F2[X ]/F (X )

• F (X ) irreducible polynomial of degree k : F (X ) = X 4 + X + 1

• element x ∈ GF(2k): polynomial of degree < k : X 2 + X + 1

Addition

coefficient-wise addition in F2(
X 3 + 1

)
+

(
X 2 + X + 1

)
= X 3 + X 2 + X

26



Multiplication

polynomial multiplication modulo F (X )

schoolbook division: (X 3 + 1) · (X 2 + X + 1) = (X 5 + X 4 + X 3 + X 2 + X + 1) mod F (X )

X 5 +X 4 +X 3 +X 2 +X +1 /(X 4 + X + 1) = X + 1

−X 5 −X 2 −X
X 4 +X 3 +1

−X 4 −X −1
X 3 +X

→ (X 3 + 1) · (X 2 + X + 1) mod F (X ) = X 3 + X

We write binary encoding: 13 = 23 + 22 + 20 = (X 3 + X 2 + 1)

27



Multiplication

polynomial multiplication modulo F (X )

schoolbook division: (X 3 + 1) · (X 2 + X + 1) = (X 5 + X 4 + X 3 + X 2 + X + 1) mod F (X )

X 5 +X 4 +X 3 +X 2 +X +1 /(X 4 + X + 1) = X + 1

−X 5 −X 2 −X
X 4 +X 3 +1

−X 4 −X −1
X 3 +X

→ (X 3 + 1) · (X 2 + X + 1) mod F (X ) = X 3 + X

We write binary encoding: 13 = 23 + 22 + 20 = (X 3 + X 2 + 1)

27



Multiplication

polynomial multiplication modulo F (X )

schoolbook division: (X 3 + 1) · (X 2 + X + 1) = (X 5 + X 4 + X 3 + X 2 + X + 1) mod F (X )

X 5 +X 4 +X 3 +X 2 +X +1 /(X 4 + X + 1) = X + 1

−X 5 −X 2 −X
X 4 +X 3 +1

−X 4 −X −1
X 3 +X

→ (X 3 + 1) · (X 2 + X + 1) mod F (X ) = X 3 + X

We write binary encoding: 13 = 23 + 22 + 20 = (X 3 + X 2 + 1)

27



Multiplication

polynomial multiplication modulo F (X )

schoolbook division: (X 3 + 1) · (X 2 + X + 1) = (X 5 + X 4 + X 3 + X 2 + X + 1) mod F (X )

X 5 +X 4 +X 3 +X 2 +X +1 /(X 4 + X + 1) = X + 1

−X 5 −X 2 −X
X 4 +X 3 +1

−X 4 −X −1
X 3 +X

→ (X 3 + 1) · (X 2 + X + 1) mod F (X ) = X 3 + X

We write binary encoding: 13 = 23 + 22 + 20 = (X 3 + X 2 + 1)

27



The AES

• AES = Advanced Encryption Standard

• Rijndael block cipher standardized by NIST 2001

• block size: 128-bit

• key sizes: 128-bit, 192-bit, 256-bit

• Block cipher composed of 10 rounds (AES-128)

• defined over GF(28) = F2[X ]/X 8 + X 4 + X 3 + X + 1.

28



• 128-bit Input: b0b1 . . . b127
• group by 8: (b0b1 . . . b7)︸ ︷︷ ︸

s0

(b8 . . . )︸ ︷︷ ︸
s1

. . . (. . . b127)︸ ︷︷ ︸
s15

• arrange column-first in 4× 4 matrix

state =


s0 s4 s8 s12

s1 s5 s9 s13

s2 s6 s10 s14

s3 s7 s11 s15


• Key Schedule takes 128-bit key: produces 11 round keys

rk
(0)
0 rk

(0)
4 rk

(0)
8 rk

(0)
12

rk
(0)
1 rk

(0)
5 rk

(0)
9 rk

(0)
13

rk
(0)
2 rk

(0)
6 rk

(0)
10 rk

(0)
14

rk
(0)
3 rk

(0)
7 rk

(0)
11 rk

(0)
15


︸ ︷︷ ︸

RK 0

. . .


rk

(10)
0 rk

(10)
4 rk

(10)
8 rk

(10)
12

rk
(10)
1 rk

(10)
5 rk

(10)
9 rk

(10)
13

rk
(10)
2 rk

(10)
6 rk

(10)
10 rk

(10)
14

rk
(10)
3 rk

(10)
7 rk

(10)
11 rk

(10)
15


︸ ︷︷ ︸

RK 10

29



• 128-bit Input: b0b1 . . . b127
• group by 8: (b0b1 . . . b7)︸ ︷︷ ︸

s0

(b8 . . . )︸ ︷︷ ︸
s1

. . . (. . . b127)︸ ︷︷ ︸
s15

• arrange column-first in 4× 4 matrix

state =


s0 s4 s8 s12

s1 s5 s9 s13

s2 s6 s10 s14

s3 s7 s11 s15



• Key Schedule takes 128-bit key: produces 11 round keys
rk

(0)
0 rk

(0)
4 rk

(0)
8 rk

(0)
12

rk
(0)
1 rk

(0)
5 rk

(0)
9 rk

(0)
13

rk
(0)
2 rk

(0)
6 rk

(0)
10 rk

(0)
14

rk
(0)
3 rk

(0)
7 rk

(0)
11 rk

(0)
15


︸ ︷︷ ︸

RK 0

. . .


rk

(10)
0 rk

(10)
4 rk

(10)
8 rk

(10)
12

rk
(10)
1 rk

(10)
5 rk

(10)
9 rk

(10)
13

rk
(10)
2 rk

(10)
6 rk

(10)
10 rk

(10)
14

rk
(10)
3 rk

(10)
7 rk

(10)
11 rk

(10)
15


︸ ︷︷ ︸

RK 10

29



• 128-bit Input: b0b1 . . . b127
• group by 8: (b0b1 . . . b7)︸ ︷︷ ︸

s0

(b8 . . . )︸ ︷︷ ︸
s1

. . . (. . . b127)︸ ︷︷ ︸
s15

• arrange column-first in 4× 4 matrix

state =


s0 s4 s8 s12

s1 s5 s9 s13

s2 s6 s10 s14

s3 s7 s11 s15


• Key Schedule takes 128-bit key: produces 11 round keys

rk
(0)
0 rk

(0)
4 rk

(0)
8 rk

(0)
12

rk
(0)
1 rk

(0)
5 rk

(0)
9 rk

(0)
13

rk
(0)
2 rk

(0)
6 rk

(0)
10 rk

(0)
14

rk
(0)
3 rk

(0)
7 rk

(0)
11 rk

(0)
15


︸ ︷︷ ︸

RK 0

. . .


rk

(10)
0 rk

(10)
4 rk

(10)
8 rk

(10)
12

rk
(10)
1 rk

(10)
5 rk

(10)
9 rk

(10)
13

rk
(10)
2 rk

(10)
6 rk

(10)
10 rk

(10)
14

rk
(10)
3 rk

(10)
7 rk

(10)
11 rk

(10)
15


︸ ︷︷ ︸

RK 10

29



AES Round Function

1 SubBytes: S-box(si ) = f (s−1
i )

2 ShiftRows:


s0 s4 s8 s12

s1 s5 s9 s13

s2 s6 s10 s14

s3 s7 s11 s15

 →


s0 s4 s8 s12

s5 s9 s13 s1

s10 s14 s2 s6

s15 s3 s7 s11



3 MixColumns:


02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

 ·


s0 s4 s8 s12

s1 s5 s9 s13

s2 s6 s10 s14

s3 s7 s11 s15


4 AddRoundKey: state + RK r

30



AES Round Function

1 SubBytes: S-box(si ) = f (s−1
i )

2 ShiftRows:


s0 s4 s8 s12

s1 s5 s9 s13

s2 s6 s10 s14

s3 s7 s11 s15

 →


s0 s4 s8 s12

s5 s9 s13 s1

s10 s14 s2 s6

s15 s3 s7 s11



3 MixColumns:


02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

 ·


s0 s4 s8 s12

s1 s5 s9 s13

s2 s6 s10 s14

s3 s7 s11 s15


4 AddRoundKey: state + RK r

30



AES Round Function

1 SubBytes: S-box(si ) = f (s−1
i )

2 ShiftRows:


s0 s4 s8 s12

s1 s5 s9 s13

s2 s6 s10 s14

s3 s7 s11 s15

 →


s0 s4 s8 s12

s5 s9 s13 s1

s10 s14 s2 s6

s15 s3 s7 s11



3 MixColumns:


02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

 ·


s0 s4 s8 s12

s1 s5 s9 s13

s2 s6 s10 s14

s3 s7 s11 s15



4 AddRoundKey: state + RK r

30



AES Round Function

1 SubBytes: S-box(si ) = f (s−1
i )

2 ShiftRows:


s0 s4 s8 s12

s1 s5 s9 s13

s2 s6 s10 s14

s3 s7 s11 s15

 →


s0 s4 s8 s12

s5 s9 s13 s1

s10 s14 s2 s6

s15 s3 s7 s11



3 MixColumns:


02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

 ·


s0 s4 s8 s12

s1 s5 s9 s13

s2 s6 s10 s14

s3 s7 s11 s15


4 AddRoundKey: state + RK r

30



AES S-box as Boolean Circuit

due to Boyar and Peralta [BP10]: 32 AND gates, 83 XOR gates

31



AES S-box as Boolean Circuit

due to Boyar and Peralta [BP10]: 32 AND gates, 83 XOR gates

31



→ in circuit form: https://nigelsmart.github.io/MPC-Circuits/

Cost: 32 GF(2) multiplications in 6 rounds

32

https://nigelsmart.github.io/MPC-Circuits/


AES S-box as Polynomial

Goal: find P(Z ) s.t.

P(0) = f (0)

P(1) = f (1)

P(2) = f (2−1)

...

P(255) = f (255−1)

Approach 1: due to [DKLMS12]

P(z) = 0x63+ 0x8Fz127 + 0xB5z191 + z223 + 0xF4z239 + 0x25z247

+ 0xF9z251 + 0x09z253 + 0x05z254

Cost: shortest addition chain for the set {127, 191, 223, 239, 247, 251, 253, 254}
• 18 secure multiplications in GF(28) in 12 rounds

33



AES S-box as Polynomial

Goal: find P(Z ) s.t.

P(0) = f (0)

P(1) = f (1)

P(2) = f (2−1)

...

P(255) = f (255−1)

Approach 1: due to [DKLMS12]

P(z) = 0x63+ 0x8Fz127 + 0xB5z191 + z223 + 0xF4z239 + 0x25z247

+ 0xF9z251 + 0x09z253 + 0x05z254

Cost: shortest addition chain for the set {127, 191, 223, 239, 247, 251, 253, 254}
• 18 secure multiplications in GF(28) in 12 rounds

33



AES S-box as Polynomial

Goal: find P(Z ) s.t.

P(0) = f (0)

P(1) = f (1)

P(2) = f (2−1)

...

P(255) = f (255−1)

Approach 1: due to [DKLMS12]

P(z) = 0x63+ 0x8Fz127 + 0xB5z191 + z223 + 0xF4z239 + 0x25z247

+ 0xF9z251 + 0x09z253 + 0x05z254

Cost: shortest addition chain for the set {127, 191, 223, 239, 247, 251, 253, 254}
• 18 secure multiplications in GF(28) in 12 rounds 33



Approach 2: Using BitDecomposition

BitDecomposition: Jb7X 7 + · · ·+ b1X + b0K→ Jb7K, . . . , Jb1K, Jb0K
→ computing z2 ∈ GF(28) is bit-linear!

• Observation: f (z−1) = f (z254) (since 0 is mapped to 0)

• write z254 as

1 z3 = z · z2 (1 mult.)

2 z15 = (z3)4 · z3, z14 = (z3)4 · z2 (2 mult.)

3 z254 = (z15)16 · z14 (1 mult.)

Cost: 4 GF(28) multiplications in 3 rounds

cf. [DK10], [CHIKP18]

34



Approach 2: Using BitDecomposition

BitDecomposition: Jb7X 7 + · · ·+ b1X + b0K→ Jb7K, . . . , Jb1K, Jb0K
→ computing z2 ∈ GF(28) is bit-linear!

• Observation: f (z−1) = f (z254) (since 0 is mapped to 0)

• write z254 as

1 z3 = z · z2 (1 mult.)

2 z15 = (z3)4 · z3, z14 = (z3)4 · z2 (2 mult.)

3 z254 = (z15)16 · z14 (1 mult.)

Cost: 4 GF(28) multiplications in 3 rounds

cf. [DK10], [CHIKP18]

34



Approach 2: Using BitDecomposition

BitDecomposition: Jb7X 7 + · · ·+ b1X + b0K→ Jb7K, . . . , Jb1K, Jb0K
→ computing z2 ∈ GF(28) is bit-linear!

• Observation: f (z−1) = f (z254) (since 0 is mapped to 0)

• write z254 as

1 z3 = z · z2 (1 mult.)

2 z15 = (z3)4 · z3, z14 = (z3)4 · z2 (2 mult.)

3 z254 = (z15)16 · z14 (1 mult.)

Cost: 4 GF(28) multiplications in 3 rounds

cf. [DK10], [CHIKP18]

34



Approach 2: Using BitDecomposition

BitDecomposition: Jb7X 7 + · · ·+ b1X + b0K→ Jb7K, . . . , Jb1K, Jb0K
→ computing z2 ∈ GF(28) is bit-linear!

• Observation: f (z−1) = f (z254) (since 0 is mapped to 0)

• write z254 as

1 z3 = z · z2 (1 mult.)

2 z15 = (z3)4 · z3, z14 = (z3)4 · z2 (2 mult.)

3 z254 = (z15)16 · z14 (1 mult.)

Cost: 4 GF(28) multiplications in 3 rounds

cf. [DK10], [CHIKP18]

34



Approach 3: Using Tower Fields [MPSSTT25]

Isomorphism ϕ : GF(28)→ GF(24)2

1 ϕ(z) = (ah, aℓ)

2 v = ea2h + ah · aℓ + a2ℓ (1 mult.)

3 v−1 = v2 · v4 · v8 (2 mult.)

4 z−1 = ϕ−1(ah · v−1, (ah + aℓ) · v−1) (2 mult.)

Cost: 5 GF(24) multiplications in 4 rounds

35



Approach 3: Using Tower Fields [MPSSTT25]

Isomorphism ϕ : GF(28)→ GF(24)2

1 ϕ(z) = (ah, aℓ)

2 v = ea2h + ah · aℓ + a2ℓ (1 mult.)

3 v−1 = v2 · v4 · v8 (2 mult.)

4 z−1 = ϕ−1(ah · v−1, (ah + aℓ) · v−1) (2 mult.)

Cost: 5 GF(24) multiplications in 4 rounds

35



Approach 3: Using Tower Fields [MPSSTT25]

Isomorphism ϕ : GF(28)→ GF(24)2

1 ϕ(z) = (ah, aℓ)

2 v = ea2h + ah · aℓ + a2ℓ (1 mult.)

3 v−1 = v2 · v4 · v8 (2 mult.)

4 z−1 = ϕ−1(ah · v−1, (ah + aℓ) · v−1) (2 mult.)

Cost: 5 GF(24) multiplications in 4 rounds

35



Approach 3: Using Tower Fields [MPSSTT25]

Isomorphism ϕ : GF(28)→ GF(24)2

1 ϕ(z) = (ah, aℓ)

2 v = ea2h + ah · aℓ + a2ℓ (1 mult.)

3 v−1 = v2 · v4 · v8 (2 mult.)

4 z−1 = ϕ−1(ah · v−1, (ah + aℓ) · v−1) (2 mult.)

Cost: 5 GF(24) multiplications in 4 rounds

35



Oblivious Table Lookup Protocol

Goal: compute table lookup LUT JT [x ]K from table T and JxK

given random one-hot vector correlation from preprocessing JrK, Je(r)K

Je(r)K = (J0K, . . . , J0K, J1K︸ ︷︷ ︸
r

, J0K, . . . )

1 Reveal value c = r + x

2 Local computation JT [x ]K =
∑

i T [c − i ] · Je(r)i K

36



Oblivious Table Lookup Protocol

Goal: compute table lookup LUT JT [x ]K from table T and JxK

given random one-hot vector correlation from preprocessing JrK, Je(r)K

Je(r)K = (J0K, . . . , J0K, J1K︸ ︷︷ ︸
r

, J0K, . . . )

1 Reveal value c = r + x

2 Local computation JT [x ]K =
∑

i T [c − i ] · Je(r)i K

36



Oblivious Table Lookup Protocol

Goal: compute table lookup LUT JT [x ]K from table T and JxK

given random one-hot vector correlation from preprocessing JrK, Je(r)K

Je(r)K = (J0K, . . . , J0K, J1K︸ ︷︷ ︸
r

, J0K, . . . )

1 Reveal value c = r + x

2 Local computation JT [x ]K =
∑

i T [c − i ] · Je(r)i K

36



AES S-box as Oblivious Table Lookup

AES S-box table: 256 elements

→ costly preprocessing of length-256 random one-hot vector (≈ 247 bit-multiplications)

MAESTRO (3-party, honest majority) [MPSSTT25]

using replicated secret sharing reduce cost with a trick

Better preprocessing:

1 obtain 2 length-16 random one-hot vectors: JuK, Je(u)K and JvK, Je(v)K

2 local tensor product ⟨e(r)⟩ ← Je(u)K⊗ Je(v)K
where r = u∥v

3 output (JrK, ⟨e(r)⟩)
→ cost: 22 GF(2) multiplications in 2 rounds (preprocessing)

→ cost: 16 bits in 1 round (online)

37



AES S-box as Oblivious Table Lookup

AES S-box table: 256 elements

→ costly preprocessing of length-256 random one-hot vector (≈ 247 bit-multiplications)

MAESTRO (3-party, honest majority) [MPSSTT25]

using replicated secret sharing reduce cost with a trick

Better preprocessing:

1 obtain 2 length-16 random one-hot vectors: JuK, Je(u)K and JvK, Je(v)K

2 local tensor product ⟨e(r)⟩ ← Je(u)K⊗ Je(v)K
where r = u∥v

3 output (JrK, ⟨e(r)⟩)
→ cost: 22 GF(2) multiplications in 2 rounds (preprocessing)

→ cost: 16 bits in 1 round (online)

37



AES S-box as Oblivious Table Lookup

AES S-box table: 256 elements

→ costly preprocessing of length-256 random one-hot vector (≈ 247 bit-multiplications)

MAESTRO (3-party, honest majority) [MPSSTT25]

using replicated secret sharing reduce cost with a trick

Better preprocessing:

1 obtain 2 length-16 random one-hot vectors: JuK, Je(u)K and JvK, Je(v)K

2 local tensor product ⟨e(r)⟩ ← Je(u)K⊗ Je(v)K
where r = u∥v

3 output (JrK, ⟨e(r)⟩)
→ cost: 22 GF(2) multiplications in 2 rounds (preprocessing)

→ cost: 16 bits in 1 round (online)

37



AES S-box as Oblivious Table Lookup

AES S-box table: 256 elements

→ costly preprocessing of length-256 random one-hot vector (≈ 247 bit-multiplications)

MAESTRO (3-party, honest majority) [MPSSTT25]

using replicated secret sharing reduce cost with a trick

Better preprocessing:

1 obtain 2 length-16 random one-hot vectors: JuK, Je(u)K and JvK, Je(v)K

2 local tensor product ⟨e(r)⟩ ← Je(u)K⊗ Je(v)K
where r = u∥v

3 output (JrK, ⟨e(r)⟩)
→ cost: 22 GF(2) multiplications in 2 rounds (preprocessing)

→ cost: 16 bits in 1 round (online)

37



AES S-box as Oblivious Table Lookup

AES S-box table: 256 elements

→ costly preprocessing of length-256 random one-hot vector (≈ 247 bit-multiplications)

MAESTRO (3-party, honest majority) [MPSSTT25]

using replicated secret sharing reduce cost with a trick

Better preprocessing:

1 obtain 2 length-16 random one-hot vectors: JuK, Je(u)K and JvK, Je(v)K

2 local tensor product ⟨e(r)⟩ ← Je(u)K⊗ Je(v)K
where r = u∥v

3 output (JrK, ⟨e(r)⟩)

→ cost: 22 GF(2) multiplications in 2 rounds (preprocessing)

→ cost: 16 bits in 1 round (online)

37



AES S-box as Oblivious Table Lookup

AES S-box table: 256 elements

→ costly preprocessing of length-256 random one-hot vector (≈ 247 bit-multiplications)

MAESTRO (3-party, honest majority) [MPSSTT25]

using replicated secret sharing reduce cost with a trick

Better preprocessing:

1 obtain 2 length-16 random one-hot vectors: JuK, Je(u)K and JvK, Je(v)K

2 local tensor product ⟨e(r)⟩ ← Je(u)K⊗ Je(v)K
where r = u∥v

3 output (JrK, ⟨e(r)⟩)
→ cost: 22 GF(2) multiplications in 2 rounds (preprocessing)

→ cost: 16 bits in 1 round (online)

37



Performance

→ measure throughput in AES blocks/s

Throughput (blocks/s)

Protocol Online Total Online Total Online Total

Polynomial Approach 2 568 504 568 504 124 290 124 290 13 392 13 392

Polynomial Approach 3 729 822 729 822 179 369 179 369 18 497 18 497

Oblv. Table Lookup 641 302 108 114 148 917 39 156 16 574 5 216

Network
10 Gbit/s 1 Gbit/s 100 MBit/s

≤ 1ms RTT ≤ 1ms RTT 30ms RTT

semi-honest security, 16-core 128GB RAM

38



→ measure throughput in AES blocks/s

Throughput (blocks/s)

Protocol Online Total Online Total Online Total

Polynomial Approach 2∗ 152 127 10 100 33 646 4 490 4 707 1 039

Polynomial Approach 3 48 924 48 924 18 829 18 829 5 396 5 396

Oblv. Table Lookup 32 508 25 409 13 547 10 560 3 370 2 345

Network
10 Gbit/s 1 Gbit/s 100 MBit/s

≤ 1ms RTT ≤ 1ms RTT 30ms RTT

∗ with [FLNW17]

active security, 16-core 128GB RAM

39



Thank you!

39



References

[AMMR18] Agrawal, Mohassel, Mukherjee and Rindal, DiSE: Distributed Symmetric-

key Encryption, CCS, 2018.

[BP10] Boyar and Peralta, A new combinational logic minimization technique with

applications to cryptology, International Symposium on Experimental Al-

gorithms, 2010.

[CHIKP18] Chida, Hamada, Ikarashi, Kikuchi and Pinkas, High-Throughput Secure

AES Computation, WAHC, 2018.

[DK10] Damg̊ard and Keller, Secure Multiparty AES, FC, 2010.

[DKLMS12] Damg̊ard, Keller, Larraia, Miles and Smart, Implementing AES via an Ac-

tively/Covertly Secure Dishonest-Majority MPC Protocol, SCN, 2012.

[FLNW17] Furukawa, Lindell, Nof and Weinstein, High-throughput secure three-party

computation for malicious adversaries and an honest majority, Eurocrypt,

2017.

[MPSSTT25] Morita, Pohle, Sadakane, Scholl, Tozawa and Tschudi, MAESTRO: Multi-

Party AES Using Lookup Tables, Usenix Security, 2025. 40


	Content
	Setting
	Symmetric-key Encryption
	Setting: Distributed Encryption
	Distributed Decryption
	Desirable Properties

	Applications
	Distributed Symmetric-key Encryption (DiSE)
	Distributed Symmetric-key Encryption (DiSE) [AMMR18]
	Distributed Pseudo-random Function (DPRF)
	Commitment Scheme
	The Encryption Protocol
	The Decryption Protocol
	Instantiating DPRF
	Performance

	MPC-based Distributed Symmetric-key Encryption
	Another Approach: Using MPC
	Additive Secret Sharing
	Replicated Secret Sharing
	Structure of a SPN Block Cipher
	The Substitution Layer
	Useful/MPC-friendly Properties

	AES as Example
	Prelude: Galois Fields
	The AES
	AES Round Function
	AES S-box as Boolean Circuit
	AES S-box as Polynomial
	Oblivious Table Lookup Protocol
	AES S-box as Oblivious Table Lookup
	Performance
	Thank you!
	References


